[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
21: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/07(木) 22:13:59.94 ID:c0bwFOdp さてさて、 時枝問題(数学セミナー201511月号の記事)まとめについては スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/11-67 ご参照! ( 特に時枝記事アスキー版 スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/18-25 ) スレ54 https://rio2016.5ch.net/test/read.cgi/math/1540684573/94 94 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/11/01(木) ID:ypCHJLQo >>89 >「どの同値類が来ても、それに対応する(有限値の)決定番号を準備出来ますよ」 >ということです >だから決定番号が有限に収まる確率は1になる 突然で、話が見えない人も多いだろうから、簡単に書くと 数学セミナー 2015年11月号 箱入り無数目 時枝 正(下記参考)で 話の前提は、こうだったね 1)可算無限個の箱の列(まあ自然数で1番〜n番までの箱で、n→∞を実現したよと) 2)箱に任意の数を入れる(実数でもなんでも良し。重複も許す) 3)この数列を、列のしっぽの同値類で分類する 4)二つの数列において、ある番号mから先の数列しっぽが一致するとき、mを決定番号と呼ぶ で、その流儀の説明倣えば a)決定番号が1になる確率(2列の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから) b)決定番号が2になる確率(2列の2番目以降の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから) c)以下同様に、決定番号がkになる確率(2列のk番目以降の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから) d)よって、どの有限な決定番号を考えても、それ以降の全ての、しっぽの対応する可算無限個の箱の数が、一致する場合の確率は、0になります !!(^^ (∵しっぽが可算無限個の箱の列だから) (参考) https://www.nippyo.co.jp/shop/magazine/6987.html 数学セミナー 2015年11月号 箱入り無数目───────────────時枝 正 36 (引用終り) ほぼほぼ、時枝は、「ぷふ」さんのおかげで完全終了です! \(^^)/ http://rio2016.5ch.net/test/read.cgi/math/1551963737/21
22: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/07(木) 22:14:33.96 ID:c0bwFOdp >>21 つづき で、最近、時枝の可算無限個の数列のシッポの同値類と、函数の芽の同値類(茎、層の関連)との対応で これで、「時枝がなぜ当たるように見えるのか(実際は当たらないのに)」が説明できそうだということ 細かい話は後にして、取り敢ず、下記コピペしておきます。 スレ54 https://rio2016.5ch.net/test/read.cgi/math/1540684573/481 481 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/11/16(金) ID:IBqqyHwA (一部加筆) >>478 余談ですが 可算無限数列のしっぽの同値類 これ、最近、 上記のように考えると 層の茎の芽(>>434)と 親和性があるかもと 思っています [0,1/n]を含むように 縮小していく開集合を考えると 「芽 (数学):芽(め、が、英: germ)とは、その対象に同種の対象を加えて作られた同値類のうち、局所的な性質が共通するように集めてきたものを呼ぶ概念である」 ということなので、X=0の茎の芽の同値類と、時枝の可算無限数列のしっぽの同値類とが、関係してくる つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/22
25: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/07(木) 22:16:03.07 ID:c0bwFOdp >>24 つづき スレ55 https://rio2016.5ch.net/test/read.cgi/math/1543319499/25 25 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/11/27(火) 22:14:50.22 ID:Oqu1XNS+ [22/24] >>21 (関連) 荒筋だけ書いておくと 1)微分可能な1実変数函数の層の芽を考える 2)問題の未知函数をfとして、仮にx=0でf(0)=0のみが分っている とする 未知函数fの他の値はマスクされていて、知らされていないとする 3)ここで、なんでも良いのだが、既知の函数でx=0でf1(0)=1 をとる 4)f1(0)=1の芽(同値類)を考えて、同値類の代表を函数g1とする 5)f1とg1が、ある近傍δ1で、一致するとする。 つまり、0 < x <δ1 で f1=g が成り立つとする δ1を、時枝記事の決定番号にならって、決定数と呼ぶことにする 6)問題の函数をfについて、同様にf(0)=0の芽(同値類)を考えて、同値類の代表を函数gとする 同様に、δを決定数とする 7)δ1<δ である確率は1/2にすぎない 8)そこで、δ1より少し小さい値で、例えば、0.9*δ1をとり、(0, 0.9*δ1)の値のみを知ると f(0)=0の芽(同値類)が分かり、同値類の代表を函数gを知ることができ (0.9*δ1, δ1)の値について、函数の値を知ることができる 即ち、確率 1/2で、函数gと一致するとして、 (0.9*δ1, δ1)の未知函数fの値を決定できる 9)既知の函数の芽を、99個用意すれば、時枝記事と同じように、 決定数の最大値をDとして、確率 99/100で、 (0.9*D, D)の値について、函数gと一致するとして、未知函数fの値を決定できる 10)なお、0.9は、もっと小さい値とすることができるだろう (函数の芽(同値類)を知るだけで良いので、ごく近傍の函数の値を知れば良いから) 果たして、これは数学的に正しいのだろうか? 以上です 函数の芽と、時枝の数列との関連は、>>24ご参照 なお、細かい点、および、参考文献の紹介は後で つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/25
856: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/25(月) 20:57:51.83 ID:whxE2Y+u >>854 まあ、新人ROMさんには、経緯が分らないだろうから、説明すると Hart氏のPDFは、下記でわずか2ページで、game2はP2の後半に出てくる(下記の通り) (なお、時枝記事は>>21ご参照) スレ61 https://rio2016.5ch.net/test/read.cgi/math/1550409146/64 (抜粋) 時枝と選択公理の関係で、Sergiu Hart氏のPDFに下記がありましたね(^^ これを認めるなら、選択公理なしで、時枝類似の数当ては成立つ この議論は、過去なんども同じ経緯を辿って あげく、Sergiu Hart氏のgame2: を指摘すると、しっぽを撒いて逃げ行く その繰り返しです(^^ スレ44 http://rio2016.2ch.net/test/read.cgi/math/1506848694/463 より Sergiu Hart氏のPDF http://www.ma.huji.ac.il/hart/puzzle/choice.pdf Sergiu Hart氏は、ここに A similar result, but now without using the Axiom of Choice.^2 Consider the following two-person game game2: ^2 Due to Phil Reny.(=Phil Reny氏より) として、”without using the Axiom of Choice” ”game2”を提案しているよ (引用終り) 因みに、game1 は、その前のページで、2箇所に出てくる Consider the following two-person game game1: Theorem 1 For every ε > 0 Player 2 has a mixed strategy in game1 guaran- teeing him a win with probability at least 1 − ε. Remark. The proof uses the Axiom of Choice. Apply the Axiom of Choice to choose an element in each equivalence class; let F(x) denote the chosen element in the equivalence class of x (thus F : X → X satisfies x 〜 x' iff F(x) = F(x')). (引用終り) なお、このPDFの表題が、”Choice Games”となっているのは、”The proof uses the Axiom of Choice”に由来しているのだろう つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/856
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.049s