[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
172: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 22:54:23.80 ID:rk/29Zdt >>170 (追加参考) http://repository.lib.tottori-u.ac.jp/ja/list/t-authors/%E3%82%BF/03528/item/1151 http://repository.lib.tottori-u.ac.jp/files/public/0/1151/20180622142427404027/tujfersrs0401_37.pdf 第二階論理によるペアノ算術 田畑 博敏 鳥取大学教育地域科学部 2002 (抜粋) はじめに よく知られているように,ペアノは自然数に関する公理系を作ることにより,その公理から算術の真理を定理として導こうとした。 その公理の中に数学的帰納法の原理が含まれている。 第一階の論理によるこの原理の定式化は,いわゆる公理図式によるもので,具体的な一階の(自由変項を含む)論理式を代入することにより無数の公理が得られる。 それゆえ数学的帰納法の公理は無数の論理式に対応する無数の公理を含むことになる。 しかし,論理式はせいぜい可算個しかないゆえに,論理式が表す自然数の性質もせいぜい可算無限価しかない。 他方,第二階論理によって定式化される数学的帰納法の公理は単一の公理であり,それは,「すべての自然数の性質(集合)」 に言及していると解釈され,非可算個の性質(集合)を量化の範囲に含んでいる。 さらに,第一階の論理によるペアノの公理系はコンパクト性定理により標準モデルとは同型でない非標準モデルが存在するのに対して,第二階のペアノの公理系はカテゴリカルである(すなわち,すべてのモデルが同型的である)。 このような相違は,なによりも定式化の基礎にある論理の相違に由来している。 そこで,本論文の梗概はつぎのようになる。 まず第l節では第二階ペアノ算術の公理系を提示して,そのモデルのいくつかを考え,非標準的モデルにも触れる。 第2節では,第二階論理によるペアノの公理系がカテゴリカルであることを示す。 それを受けて,第3節では,公理系の意図されたモデルを,互いに同型なペアノ・モデルの代表としてとり,ここで原始回帰(primitiv erecursion)という定義図式によって定義される自然数上の演算(加法・乗法・巾法)の存在を示す。 第4節では,数学的帰納法のモデルではあるが,他のペアノの公理のモデルとはかぎらないモデルと, (意図された)自然数のモデル上の合同関係との,つながりを論じる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/172
173: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 22:54:50.53 ID:rk/29Zdt >>172 つづき 第一階論理を基礎にした第一階ペアノ算術には,自然数の構造に代表される,意図されたモデルとは同型でないモデル,非標準モデルが存在するO このことは,第一階論理において成り立つコンパクト性定理からの帰結である。 他方以下の補題(補題1. 2. 1)に見るように,第一階ペアノ算術のモデルである構造免が標準的数しか持たないことと,標準的数の集合がAにおいて第一階の式によって定義可能であることとは,必要十分の関係にある。 よって,第一階ペアノ算術が非標準モデルを持つということは意図された数(標準的数)が第一階の論理式では定義できない,ということを意味する。 「算術を適確に表現する」という観点からも,第一階論理の表現力の弱さが,ここで浮彫りになる。 さて,第一階ペアノ算術の非標準モデル,すなわち,意図された標準モデルと同型でないモデルの存在は,第一階論理のコンパクト性定理から(大まかには)以下のように導かれる。 2. 第二階ペアノ公理系のカテゴリー性 この節では,第二階ペアノ公理系がカテゴリカル(categorical)であること,すなわち任意のペアノ・モデルが同型である(isomorphic) であることを示す。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1551963737/173
175: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/11(月) 07:59:04.77 ID:NUGiaq8/ >>172 (参考追加) https://en.wikipedia.org/wiki/Peano_axioms Peano axioms (抜粋) 4 Models 4.1 Set-theoretic models 4.2 Interpretation in category theory 5 Nonstandard models https://en.wikipedia.org/wiki/Non-standard_model_of_arithmetic Non-standard model of arithmetic (抜粋) In mathematical logic, a non-standard model of arithmetic is a model of (first-order) Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934). つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/175
177: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/11(月) 09:01:00.23 ID:NUGiaq8/ >>172 補足追加 https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86 二階述語論理 (抜粋) 一階述語論理と同様に議論領域(ドメイン)の考え方を使う。 ドメインとは、量化可能な個々の元の集合である。一階述語論理では、そのドメインの個々の元が変項の値となり、量化される。 例えば、一階の論理式 ∀x (x ≠ x + 1) では、変項 x は任意の個体を表す。二階述語論理は個体の集合を変項の値とし、量化することができる。 例えば、二階の論理式 ∀S ∀x (x ∈ S ∨ x ? S) は、個体の全ての集合 S と全ての個体 x について、x が S に属するか、あるいは属さないかのどちらかであるということを主張している。 目次 1 二階論理の表現能力 2 文法 3 意味論 6 歴史と論争 二階論理の表現能力 二階述語論理は一階述語論理よりも表現能力が高い。例えば、ドメインが全ての実数の集合としたとき、一階述語論理を使ってそれぞれの実数には加法の逆元が存在するということを ∀x ∃y (x + y = 0) と表せる。 しかし、空でなく上に有界な実数の集合があるとき常にその集合には上限が存在するという命題を表すには、二階述語論理が必要となる。ドメインが全ての実数の集合としたとき、次の二階の論理式がこの命題を表している。 二階述語論理では、「ドメインは有限である」とか「ドメインは可算無限集合の濃度である」といった文も形式的に表現可能である。 ドメインが有限であるというには、そのドメインから同じドメインへの全ての単射関数が全射であることを論理式で表せばよい。 ドメインが可算無限集合の濃度であることをいうには、そのドメインの任意のふたつの無限部分集合間に全単射があることを論理式で表せばよい。 一階述語論理ではこれら(「有限集合であること」や、「可算集合であること」)を表現できないことが、レーヴェンハイム-スコーレムの定理から導かれる。 文法 意味論 二階述語論理の意味論は、個々の文の意味を確立するものである。 一階述語論理では単一の標準の意味論しかなかったが、二階述語論理では2種類の意味論 standard semantics と Henkin semantics がある。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1551963737/177
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s