[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
153: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:12:05.10 ID:rk/29Zdt >>152 つづき Contents 1 Induction and recursion 2 Examples 3 Other properties 4 Reflexivity Induction and recursion On par with induction, well-founded relations also support construction of objects by transfinite recursion. Let (X, R) be a set-like well-founded relation and F a function that assigns an object F(x, g) to each pair of an element x ∈ X and a function g on the initial segment {y: y R x} of X. Then there is a unique function G such that for every x ∈ X, As an example, consider the well-founded relation (N, S), where N is the set of all natural numbers, and S is the graph of the successor function x → x + 1. Then induction on S is the usual mathematical induction, and recursion on S gives primitive recursion. If we consider the order relation (N, <), we obtain complete induction, and course-of-values recursion. The statement that (N, <) is well-founded is also known as the well-ordering principle. There are other interesting special cases of well-founded induction. When the well-founded relation is the usual ordering on the class of all ordinal numbers, the technique is called transfinite induction. When the well-founded set is a set of recursively-defined data structures, the technique is called structural induction. When the well-founded relation is set membership on the universal class, the technique is known as ∈-induction. See those articles for more details. つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/153
154: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:13:00.87 ID:rk/29Zdt >>153 つづき Other properties If (X, <) is a well-founded relation and x is an element of X, then the descending chains starting at x are all finite, but this does not mean that their lengths are necessarily bounded. Consider the following example: Let X be the union of the positive integers and a new element ω, which is bigger than any integer. Then X is a well-founded set, but there are descending chains starting at ω of arbitrary great (finite) length; the chain ω, n ? 1, n ? 2, ..., 2, 1 has length n for any n. The Mostowski collapse lemma implies that set membership is a universal among the extensional well-founded relations: for any set-like well-founded relation R on a class X which is extensional, there exists a class C such that (X,R) is isomorphic to (C,∈). Reflexivity A relation R is said to be reflexive if a R a holds for every a in the domain of the relation. Every reflexive relation on a nonempty domain has infinite descending chains, because any constant sequence is a descending chain. For example, in the natural numbers with their usual order >=, we have 1 >= 1 >= 1 >= ・・・. To avoid these trivial descending sequences, when working with a reflexive relation R it is common to use (perhaps implicitly) the alternate relation R′ defined such that a R′ b if and only if a R b and a ≠ b. In the context of the natural numbers, this means that the relation <, which is well-founded, is used instead of the relation =<, which is not. In some texts, the definition of a well-founded relation is changed from the definition above to include this convention. https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E9%96%A2%E4%BF%82 整礎関係 (多分、上記の和訳(多分ちょっと古い版)) (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1551963737/154
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s