[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
152: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:10:57.56 ID:rk/29Zdt >>151 これ失敗でボツな(^^; 貼り直し >>150 つづき (参考引用) https://en.wikipedia.org/wiki/Well-founded_relation (抜粋) Well-founded relation "Noetherian induction" redirects here. For the use in topology, see Noetherian topological space. In mathematics, a binary relation, R, is called well-founded (or wellfounded) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is an element m not related by sRm (for instance, "s is not smaller than m") for any s ∈ S. In other words, a relation is well founded if (∀ S ⊆ X)[S ≠ Φ → (∃ m ∈ S)(∀ s ∈ S) ¬ (sRm)]. Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2] In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order. In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo?Fraenkel set theory, asserts that all sets are well-founded. A relation R is converse well-founded, upwards well-founded or Noetherian on X, if つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/152
153: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:12:05.10 ID:rk/29Zdt >>152 つづき Contents 1 Induction and recursion 2 Examples 3 Other properties 4 Reflexivity Induction and recursion On par with induction, well-founded relations also support construction of objects by transfinite recursion. Let (X, R) be a set-like well-founded relation and F a function that assigns an object F(x, g) to each pair of an element x ∈ X and a function g on the initial segment {y: y R x} of X. Then there is a unique function G such that for every x ∈ X, As an example, consider the well-founded relation (N, S), where N is the set of all natural numbers, and S is the graph of the successor function x → x + 1. Then induction on S is the usual mathematical induction, and recursion on S gives primitive recursion. If we consider the order relation (N, <), we obtain complete induction, and course-of-values recursion. The statement that (N, <) is well-founded is also known as the well-ordering principle. There are other interesting special cases of well-founded induction. When the well-founded relation is the usual ordering on the class of all ordinal numbers, the technique is called transfinite induction. When the well-founded set is a set of recursively-defined data structures, the technique is called structural induction. When the well-founded relation is set membership on the universal class, the technique is known as ∈-induction. See those articles for more details. つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/153
155: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:20:32.16 ID:rk/29Zdt >>143 >「選択公理 (→ツェルメロの公理 ) を使って整列集合をつくらなければならない」とか (>>152より) Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2] (引用終り) https://en.wikipedia.org/wiki/Axiom_of_dependent_choice Axiom of dependent choice (抜粋) In mathematics, the axiom of dependent choice, denoted by DC, is a weak form of the axiom of choice (AC) that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.[a] (引用終り) という記述があるので、選択公理と全く無関係でもないみたいだね http://rio2016.5ch.net/test/read.cgi/math/1551963737/155
171: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 19:37:27.48 ID:rk/29Zdt >>170 つづき 6.さらに、正則性公理の意味の補足 「>=, we have 1 >= 1 >= 1 >= ・・・」の例類似で、”∈を使った順序”で、∋は >=では無く、>(等号=含まず)(>>150と>>152)」だとか、 正則性公理の意味の別の側面で、それは極小元の存在保証(無限降下列禁止)の意味があるとか、そういう蘊蓄を、付け加えておけば、新歓としては良いだろうね(^^ (参考) http://fuchino.ddo.jp/misc/goedel-universe.pdf 渕野 昌,連続体仮説とゲーデルの集合論的宇宙(ユニヴァース), 現代思想,2007年2月臨時増刊号 (2007), 94-116 https://www.jstage.jst.go.jp/article/sugaku/65/4/65_0654411/_pdf/-char/ja 特別企画 これから学ぶ人のために 公理的集合論 渕 野 昌 - J-Stage 渕野昌 著 数学 ?2013 https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 (ここにフォン・ノイマンの構成法がある) http://evariste.jp/kagami/index.html かがみのホームページ プロフィール 学生時代の専攻は数学。今の趣味も数学。 http://evariste.jp/kagami/diary/0000/200401.html#20040103-1 2004年1月3日 自然数の構成と ω http://evariste.jp/kagami/diary/0000/200402.html#20040201-2 2004年2月1日 自然数と数学的帰納法 http://evariste.jp/kagami/diary/0000/200402.html#20040207-2 2004年2月7日 順序 http://evariste.jp/kagami/diary/0000/200403.html#20040320-1 2004年3月20日 順序数の定義 http://evariste.jp/kagami/diary/0000/200403.html#20040322-1 2004年3月22日(月) 整列順序 http://fuchino.ddo.jp/foundation.html 基礎の公理の成り立たない集合論 (non well-founded set theory) について 渕野 昌(Sakae Fuchino) Last modified: Sat Aug 13 14 以上 http://rio2016.5ch.net/test/read.cgi/math/1551963737/171
174: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/11(月) 07:49:41.19 ID:NUGiaq8/ >>171 > 「>=, we have 1 >= 1 >= 1 >= ・・・」の例類似で、”∈を使った順序”で、∋は >=では無く、>(等号=含まず)(>>150と>>152)」だと 下記 「例えばx={x}のような集合やx∈yかつy∈xなる集合は正則性の公理の下では集合にはなり得ない」という記述が、上記の「∋は >=では無く、>(等号=含まず)」に該当するね https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) V=WF ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。 ZF公理系の他の公理系から得られる種々の集合演算(対集合、和集合、冪集合) の結果としての集合は常にWF内に含まれるため、V=WFの仮定は全ての集合を0に通常の集合演算を施すことによって得られるものだけに制限することを主張している。 したがって、例えばx={x}のような集合やx∈yかつy∈xなる集合は正則性の公理の下では集合にはなり得ない。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1551963737/174
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s