[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
151: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:09:21.34 ID:rk/29Zdt or any s ∈ S. In other words, a relation is well founded if (∀ S ⊆ X)[S ≠ Φ → (∃ m ∈ S)(∀ s ∈ S) ¬ (sRm)]. Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2] In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order. In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo?Fraenkel set theory, asserts that all sets are well-founded. A relation R is converse well-founded, upwards well-founded or Noetherian on X, if つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/151
152: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/10(日) 11:10:57.56 ID:rk/29Zdt >>151 これ失敗でボツな(^^; 貼り直し >>150 つづき (参考引用) https://en.wikipedia.org/wiki/Well-founded_relation (抜粋) Well-founded relation "Noetherian induction" redirects here. For the use in topology, see Noetherian topological space. In mathematics, a binary relation, R, is called well-founded (or wellfounded) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is an element m not related by sRm (for instance, "s is not smaller than m") for any s ∈ S. In other words, a relation is well founded if (∀ S ⊆ X)[S ≠ Φ → (∃ m ∈ S)(∀ s ∈ S) ¬ (sRm)]. Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded if it contains no countable infinite descending chains: that is, there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.[1][2] In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order. In set theory, a set x is called a well-founded set if the set membership relation is well-founded on the transitive closure of x. The axiom of regularity, which is one of the axioms of Zermelo?Fraenkel set theory, asserts that all sets are well-founded. A relation R is converse well-founded, upwards well-founded or Noetherian on X, if つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/152
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s