[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
116: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/09(土) 10:36:37.48 ID:9Sqq12HI >>115 つづき [公理 8. 置換公理] P(x,y) を二項論理式として関数的な性質をもつとします。即ち、 P(x,y),P(x,y') が成立するとき常に y=y' が成立する。 この場合任意の集合 X に対して ある x∈X が存在して P(x,y) が成立する y 全体を含む集合が存在する 言い換えると「関数的な論理式」の集合による「像(range)」全体を含 む集合が存在するという公理であり、この集合を Y とするとき f:X → Y は写像となります。ここで f は P(x,y) を X x Y の部分集合に外延化した写 像です。 ここで非公式ですが、例えば P(x,y) を x∈ω のとき y は ω+x x がその他の場合 φ と定義し、置換公理により ω に対して存在が許される集合を Y とする と f:ω → Y は f(n)=ω+n なる写像となり ran(f) = f[ω] = {ω+n| n∈ω} も集合となることが分かります。 従って ω∪ran(f) = ω + ω を構成することが可能とな るのです。 次回以降は超限帰納法と置換公理を利用して「整列集合の順序数による表現」 「超限帰納法による関数関係の定義」「順序数の演算の定義」を行う予定です。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/116
117: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/09(土) 10:37:24.31 ID:9Sqq12HI >>116 つづき http://evariste.jp/kagami/diary/0000/200404.html#20040416-1 2004年4月16日(金) 順序数の基本演算 http://evariste.jp/kagami/diary/0000/200405.html#20040508-1 2004年5月8日(土) 選択公理と整列可能定理 (抜粋) 選択公理により例 えば次の数学の定理が証明出来ます。 任意の線型空間は基底を持つ 任意の可換環は極大イデアルを持つ 任意のフィルターに対してそれを含む超フィルターが存在する コンパクト空間の直積はコンパクト 選択公理は具体的に対象を指定せずに存在を主張する公理であり、初期にはそ の妥当性に関して色々な議論があったのですが、数学における超越的な「存在 証明」に対する有効性により、現代数学のかなりの部分がこの公理に依存して います。 さらにゲーデルにより証明された選択公理の他の公理からの無矛盾性 により、少なくとも「矛盾」という観点からのこの公理に対する疑いは無くなっ たのです。選択公理により「任意の集合は整列可能」であることが証明出来ま す。 [定理] 任意の集合は整列可能である X をが空の場合は自明なので、空でないと仮定し f を P(X) - {φ} の選択関数とします。NOT(a∈X) なる a を固定し、 g(x) = f(X - ran(x)) x が関数で X-ran(x) が空でない場合 g(x) = a その他の場合 と定義して g に対して「超限帰納法による関数の定義」を適用すると、 u(α) = g(u|α) なるものが存在し、置換公理により g(θ)=a なる最小の順序数 θ をとると u|θ は θ から X への一対一上への関数とります。こ の結果により任意の集合はある Kα と基数が等し くなり、ここで正式に X の基数が外延として定義可能となります。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/117
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s