[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
115: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/09(土) 10:36:05.77 ID:9Sqq12HI >>114 つづき http://evariste.jp/kagami/diary/0000/200403.html#20040328-1 2004年3月28日(日) 超限帰納法・置換公理 [定理] P(x) を論理式とします。 任意の順序数 α,β に対して α<β のとき P(α) が成立するとき P(β) が成立すると仮定します。このとき任 意の順序数 α に対して P(α) 言い換えると次の二つの命題は同値。 (1) (∀β)([(∀α)(α<β → P(α))] → P(β)) (2) (∀α)[P(α)] ここで全称記号は順序数全体を動くとします。 証明自体は簡単で (1) をが成立して (2) が成立しないと仮定し NOT[P(α)] が成立する順序数 α を考えます。α は整列集 合なので γ∈α を P(γ) を成立させない最小元とする と γ の最小性により δ<γ に対して P(δ) が成 立し (1) の仮定により P(γ) が成立して矛盾。 実際には超限帰納法は次の定式化が多用されます。 (i) P(0) が成立 (ii) P(α) が成立するとき P(α+1) も成立する (iii) α が 0 でない極限数で β<α に対して P(β) が成立するとき P(α) が成立する このときすべての α に対して P(α) が成立する 残念ながらこの定理も今の段階では余り役に立ちません。つまり ここで述べたように 現在手持ちの順序数が非常に「少ない」からです。例えば ω + ω さえもまだ定義することができません。膨大な順序数を「構成」するには次に 述べる置換公理が必要なのです。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/115
116: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/09(土) 10:36:37.48 ID:9Sqq12HI >>115 つづき [公理 8. 置換公理] P(x,y) を二項論理式として関数的な性質をもつとします。即ち、 P(x,y),P(x,y') が成立するとき常に y=y' が成立する。 この場合任意の集合 X に対して ある x∈X が存在して P(x,y) が成立する y 全体を含む集合が存在する 言い換えると「関数的な論理式」の集合による「像(range)」全体を含 む集合が存在するという公理であり、この集合を Y とするとき f:X → Y は写像となります。ここで f は P(x,y) を X x Y の部分集合に外延化した写 像です。 ここで非公式ですが、例えば P(x,y) を x∈ω のとき y は ω+x x がその他の場合 φ と定義し、置換公理により ω に対して存在が許される集合を Y とする と f:ω → Y は f(n)=ω+n なる写像となり ran(f) = f[ω] = {ω+n| n∈ω} も集合となることが分かります。 従って ω∪ran(f) = ω + ω を構成することが可能とな るのです。 次回以降は超限帰納法と置換公理を利用して「整列集合の順序数による表現」 「超限帰納法による関数関係の定義」「順序数の演算の定義」を行う予定です。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/116
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s