[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 http://rio2016.5ch.net/test/read.cgi/math/1551963737/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
111: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/09(土) 10:32:49.08 ID:9Sqq12HI >>110 つづき [定理] 任意の n∈N は順序数である N(即ち ω) は順序数である 証明は略しますが N 上で関係 ∈ が通常の自然数の順序を表現し ていることを考えれば直感的には明白な事実です。実際には今まで省略した証 明にはすべて数学的帰納法が使用されます。ここで一つも証明がないのもなん なので、ω+1(即ち ω∪{ω}) が順序数になることを証明 します。 まず ∈ に関する整列性ですが ω が整列集合で、ω は ω+1 の最大元なので成立するのは明らかです。推移性に関しても a∈b∈(ω+1)と仮定し b が自然数の場合は ω の推移性 から a∈ω が成立し、b=ω の場合 a∈ω は ω の定義によりこちらも明らかです。 [定義] 自然数 n に対して ω + n を次のように帰納的に定義する ω + 0 = ω ω + (n + 1) = (ω + n) + 1 最後の式の左辺の +1 は自然数の加算で、右辺の +1 は(ω + n)∪{ω + n} のことです。そうすると数学的帰納法により ω + n は順序数になることが容易に証明することが可能です。さて、ここまでで 次の順序数が構成されたわけです。 自然数 ω ω + (n + 1) (n は自然数) 直感的に記述すると自然数 n は {0,1,2,...,n-1} のことであり、ω は {0,1,2,3,...}、 ω+(n+1) は {0,1,2,3,...,ω,ω+1,...,ω+n} という感じです。 最後の n の ω までの「極限」をとり ω+ω={0,1,2,3,...,ω,ω+1,...,ω+n,...} と拡 張したいのはもちろんで、そのようにどんどん大きな順序数を構成することが 集合論の基本理念なのですが、実を言いますと今までの公理では ω+ω でさえ構成することが出来ず、次回以降に導入する「置換公 理」なるものが必要となるのです。 次回は順序数を理解するとともに、集合論における最も重要な概念である「整 列順序」に関する基本的な性質を証明し、次次回以降にこの性質を利用して順 序数の基本性質を導きたいと考えております。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/111
112: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/03/09(土) 10:33:37.28 ID:9Sqq12HI >>111 つづき http://evariste.jp/kagami/diary/0000/200403.html#20040322-1 2004年3月22日(月) 整列順序 集合 X に順序関係 < が定義されていて、X の任意の部分集合が導入され た順序に関して最小元を持つとき X を整列順序集合と呼ぶのでありました。 次の条件を満たす 整列集合 X の真部分集合 Y を「始片(initial segment)」 と呼びます。 任意の a∈Y に対し x<a なる x∈X は Y に属する 始片は次の条件で特徴付けられます。 整列集合 X に対し Y⊂X が始片である必要十分条件は a∈X が存在し て Y={x∈X|x<a} 最初の条件から二番目の条件が成立するのは明らかです。また Y が最初の条 件を満たすとき X-Y の最小元を a とすると、二番目の条件を満たすことが容 易に証明出来ます。そこで次の記号を導入します。 整列集合 X の要素 a∈X に対し {x∈X|x<a} を X[a] と記述し、 X の a による始片と呼ぶ X の要素と X の始片に一対一の対応があることは明白です。始片の概念を使 用すると、整列集合間の整列的な性質を記述することが可能です。 [補題] f: X → X を整列順序集合 X から X への増加写像とするとき、任意の x∈X に対し x f(x) x0 を f(x)<x を成立させる X の最小元とすると f の増加性 によりf(f(x0)) < f(x0) < x0 が成 立し矛盾。 つづく http://rio2016.5ch.net/test/read.cgi/math/1551963737/112
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s