[過去ログ] 現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
575
(2): 2016/11/27(日)18:02 ID:VHnvKcoU(1/2) AAS
>>560
>仮定が現実離れしていては意味がない
現実離れしていると?
なら、類別不可能であることを容易に証明できるわけだな?
さあ、証明してみてくれ
できないなら、お前は只のホラ吹きだ
605
(3): 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)10:38 ID:6Rgz8i9T(1/41) AAS
>>575
>>仮定が現実離れしていては意味がない

まず、再度強調しておくが
1.もともとは、箱には任意の実数を入れる。つまり1つの箱に連続無限大の自由度があるのだ。
2.対して、いまは、箱に0〜9の極簡単なミニモデルを考えている。
3.0〜9の数を箱に入れる極簡単なミニモデルでも、可算無限数列のしっぽは、現代数学では扱えない。
4.まして、任意の実数が箱に入る場合においておや。
606
(2): 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)10:41 ID:6Rgz8i9T(2/41) AAS
>>605 つづき

で、例えば、話は変わるが、仮に、下記”超越数かどうかが未解決の例”「e+π、e-πが有理数であるのか無理数であるのか証明されていない」を認めるとしよう
また、十進法で、下記”有理数”で「有限小数または循環小数のいずれかとなる」ことも認めよう。

もし、0が続くことを循環小数に含めるなら(1/3=0.333・・・の類似)、循環小数かどうかを見極めることができるなら、有理数であるのか無理数であるのか見分けることが可能だということだ
つまり、実数を無限小数に展開したときに、そのしっぽを見れば、循環小数かどうかを見極めることができ、有理数か否か判定可能
ところが、「e+π、e-πが有理数であるのか無理数であるのか証明されていない」のだから、現代数学は、いまだe+π、e-πの少数展開のしっぽが循環小数かどうかを見極める方法を持たないということだ

これは、>>575 時枝解法での可算無限のしっぽの見分け>>114が、箱に0〜9の極簡単なミニモデルでさえも、現代数学では不可という例示だ
省12
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s