[過去ログ] 現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
272(1): 現代数学の系譜11 ガロア理論を読む 2016/11/12(土)08:06 ID:CRbt3jrT(10/14) AAS
>>268 補足
定理とその帰結
ゲーデルの完全性定理は、一階述語計算の演繹系が、全ての論理的に妥当な論理式の証明に追加の推論規則を必要としないという意味で「完全」であるとしている。完全性の逆は健全性であり、演繹系において論理的に妥当な論理式のみが証明可能だということを意味する。
これらから、論理式が論理的に妥当であることと、それが形式的演繹の帰結であることは同値である。
ゲーデルの完全性定理をより一般化した版もある。すなわち、任意の一階の理論 T とその理論での言語における任意の命題 S について、T における S の形式的演繹が存在することと、S が T のあらゆるモデルで成り立つことは同値である。
この一般化された定理は暗黙のうちに使われており、例えば、命題を群論の公理系で証明可能であることを示すとき、任意の群についてその命題が成り立つことを示すことで証明とする。
異なるモデルでも真となることを扱う数理論理学の一分野をモデル理論と呼ぶ。証明論という一分野では形式体系の証明そのものの構造を研究する。完全性定理は意味論と統語論の間を繋ぐことでこれら2つの分野の基本的な繋がりを確立している。
省6
273: 現代数学の系譜11 ガロア理論を読む 2016/11/12(土)08:16 ID:CRbt3jrT(11/14) AAS
>>272
英語版 (日本語版だけではよくわからん)
外部リンク:en.wikipedia.org
(抜粋)
As a theorem of arithmetic
The Model Existence Theorem and its proof can be formalized in the framework of Peano arithmetic.
Precisely, we can systematically define a model of any consistent effective first-order theory T in Peano arithmetic by interpreting each symbol of T by an arithmetical formula whose free variables are the arguments of the symbol. However, the definition expressed by this formula is not recursive.
省5
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s