[過去ログ] 現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
114(29): 現代数学の系譜11 ガロア理論を読む 2016/11/05(土)10:50 ID:DzICE8Th(11/47) AAS
つづき
さて
(現代数学の系譜11 ガロア理論を読む18)>>2 再録
1.時枝問題(「箱入り無数目」数学セミナー2015.11月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
省20
135(4): 現代数学の系譜11 ガロア理論を読む 2016/11/05(土)19:36 ID:DzICE8Th(26/47) AAS
>>131-133
はい、そういう主張があることは認めます
どうぞ、論文にまとめてPDFにして投稿をお願いします
このスレでは、ここまでで良いでしょ
1.>>131 について:時枝記事では、>>114の2にあるように、事前に、可算無限個の数列のある番号から先のしっぽが一致する場合の同値類を類別します。
そして、事前の同値類と類別と、100列の数列を比較します。
問題は、キマイラ数列をどう区別し排除するのか? 時枝記事では、不純数列は排除します。不純数列は入らないようにしますというのですね。どうやって?
省4
149(5): 現代数学の系譜11 ガロア理論を読む 2016/11/05(土)20:58 ID:DzICE8Th(39/47) AAS
>>143
R^NのNの定義と決定番号の集合をどう考えるか?
その定義と、無限定な時枝記事の「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.」>>114
「問題に戻り,閉じた箱を100列に並べる.」>>115
との整合性が求められる
これは、>>135に書いたように、N→100×Nと100×N→Nと両方可能だろうと
この文脈でR^NのNの定義と決定番号の集合をどう考えるか?
省16
156(1): 現代数学の系譜11 ガロア理論を読む 2016/11/05(土)21:41 ID:DzICE8Th(43/47) AAS
>>149-153
まあ、ここら時枝記事の>>114-116
けっこうはちゃめちゃなことをやっている
可算無限個の箱を、仮に1列にならべる
↓
可算無限個の箱を、仮に100列にならべかえる
↓
省6
178(2): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)10:04 ID:ivLdkhn2(9/43) AAS
>>167
>"3.14159265358979… 37"の最後の"3","7"の添え字はNでは表せない。
lim(n→∞) π''''n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 37
で、lim(n→∞)として、極限を考えただけだよ
"添え字はNでは表せない"→その数列は扱わない?
だったら、そう定義したら?
それなら、最初の時枝記事(>>114-115)に戻りなさいよ
省4
228(4): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)13:20 ID:ivLdkhn2(33/43) AAS
>>216
その批判こそ、時枝の>>114-115
に当てはまる
>>114-115で位相は定義されていないよ
そして、無限数列のしっぽで同値類分類をするという
そこから、決定番号を導くところで破綻していると思うよ
230(1): 2016/11/06(日)13:22 ID:6UoZYVsS(6/7) AAS
>>228
時枝は>>114-115でlimなんて持ち出していないから当然位相なんて考える必要ない
しかしスレ主は反例構成においてlimを使ってるのでそのlimは何かと聞いている
265(3): 現代数学の系譜11 ガロア理論を読む 2016/11/12(土)07:11 ID:CRbt3jrT(3/14) AAS
>>264 つづき
さて、
1)数列とくれば収束という条件反射が、みなさんにも形成されているだろう いわゆるコーシー列
外部リンク:ja.wikipedia.org 数列
外部リンク:ja.wikipedia.org コーシー列
2)>>200や>>233で示したのは、コーシー列との比較で、時枝のしっぽによる無限数列の同値類を考えてみたのだった
3)数列のしっぽによる同値類。数列のしっぽとは、極限すれば最後の数。有限数列なら、最後の数Anが異なれば、つまりAn≠A'nなら、同じ同値類に属さない
省3
292(2): 現代数学の系譜11 ガロア理論を読む 2016/11/13(日)23:40 ID:V7Qq+5Yj(1/3) AAS
>>277-291
>>266のつづき
1)時枝記事で見ると、>>114「箱が可算無限個ある」から、これは先のレベル合わせでいう、可算無限(アレフゼロ) 。無限大記号∞。ここはしっかり押さえておこう。定義だから(重要なので再録)
2)可算無限個の箱を1列に並べる。そして、先頭の箱から順に自然数を1から順に入れていく。これを集合Vとする。数列としては、1,2,3,・・・,n,・・・。この数列は、∈R^N
3)このとき、先頭の箱から順に連番を書くとする。1から順に。箱の番号は、1,2,3,・・・,n,・・・となる
(なお、奇数番の箱は赤、偶数番の箱を青に塗ることにしよう。)
4)選択公理を仮定する(可算選択公理でも可)。
省8
316(6): 現代数学の系譜11 ガロア理論を読む 2016/11/19(土)11:02 ID:0Q0Vh9CE(6/46) AAS
>>315つづき
さて、本論1
<時枝記事では、R^ Nは未定義。だから、R^ Nをどう解釈が問題となる>
1.時枝記事では、R^ Nは未定義:>>114に引用の通り。
2.だから、”可算無限個の箱”から類推解釈するしかない。
が、上記の通り、”R^ N は無限次元!→無限次元だから、次元は当然デデキント無限!”と考えるべし
3.実際、>>115のように時枝記事でも”問題に戻り,閉じた箱を100列に並べる”としているが、100列を、>>114の実数列の集合 R^Nと比較しているのだから、正にデデキント無限→ヒルベルトの無限ホテルのロジックを使っている!!
省2
346(1): 2016/11/19(土)17:50 ID:ADamYXwO(2/2) AAS
>>339
>>114では
>実数列の集合 R^Nを考える.
と明記されている。>>316で
>1.時枝記事では、R^ Nは未定義:>>114に引用の通り。
>2.だから、”可算無限個の箱”から類推解釈するしかない。
と書き解釈することがスレ主の思い込みである。
352: 現代数学の系譜11 ガロア理論を読む 2016/11/19(土)19:55 ID:0Q0Vh9CE(34/46) AAS
>>345-346
どうも。スレ主です。
おっちゃん、レスありがとう
そうやって、おっちゃんが、時枝記事擁護側にいることが、ありがたい(^^;
>時枝記事を読むにあたり、文脈上 R^N は定義されている。
>何も問題はない。
いや、定義の話は、>>114で、「実数列の集合 R^Nを考える」としか書いていないよ
省9
353(2): 現代数学の系譜11 ガロア理論を読む 2016/11/19(土)20:23 ID:0Q0Vh9CE(35/46) AAS
>>316 訂正
<時枝記事では、R^ Nは未定義。だから、R^ Nをどう解釈が問題となる>
↓
<時枝記事では、R^ Nは未定義。だから、R^ Nをどう解釈するかが問題となる>
>>347
カントールの集合論を否定したいのか?
「有限主義」?
省19
376(1): 現代数学の系譜11 ガロア理論を読む 2016/11/20(日)07:24 ID:G8Unjt5A(1/25) AAS
>>375
>解答者は数当てを成功させようとしているのだからわざわざスレ主の提示する方法を選ぶ必要はない
そうだね。だが、それは、>>115の(100列並べ)段階でだね。>>115の段階では解答者が並べるから、並べ方は選択できる
しかし、>>114の同値類を調べるときは、きちんと全数列を調べ上げないといけない
例えば、1列目と2列目の数列で、属する同値類に差がでると、まずい
というか、>>114の同値類を調べるとき、自然に、集合 R^Nのあらゆる数列が類別されるのが理想だな
つづく
377(4): 現代数学の系譜11 ガロア理論を読む 2016/11/20(日)07:25 ID:G8Unjt5A(2/25) AAS
>>376 つづき
そこで、>>370に戻って、集合 R^Nのあらゆる数列の類別を考えるのだから、次の数列も可だろう
1)A1,A2,・・・・,An-4,Ae',Ae | Ae'は最後から一つ前の箱,Aeは最後の箱、n-4は先頭と最後の4つ分を引いた数
2)この数列の長さはnだ
3)当然n→∞の極限を取れる
4)箱に0〜9の一桁の数を入れるミニモデルを考える
5)この場合、Aeには0〜9の10通りの数が入る。だから、同値類は10通り。Aeをいま固定しよう
省5
399(6): 現代数学の系譜11 ガロア理論を読む 2016/11/20(日)19:42 ID:G8Unjt5A(20/25) AAS
>>398
どうも。スレ主です。
>つまり有限数列を項とする列の極限を考えていると?
Yes! 有限数列を項とする列の極限を考えるのは数学の基本だろ?
>その列が極限を持つにはコーシー列でないといかんのだが、いつそのことを示したんだ?
1)コーシー列でない数列を考えていることは、時枝記事自身に記載があるよ。
>>114" 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.但しもっときびしい同値関係を使う."
省21
400: 現代数学の系譜11 ガロア理論を読む 2016/11/20(日)19:43 ID:G8Unjt5A(21/25) AAS
>>399
だから、上記引用から分かることは、>>114の可算無限個に入った数の列は、そもそも”(2)有限の極限として間接に扱う”という方針に従うべき。それが、記事の趣旨だろ?
>>377は、”(2)有限の極限として間接に扱う”の方針に従ったものだよ
405(1): 現代数学の系譜11 ガロア理論を読む 2016/11/20(日)21:30 ID:G8Unjt5A(25/25) AAS
>>404
いみわかんねー(^^;
1)反論1:あなたの>>398は、「極限」と「数列の収束」を取り違えていたの???
2)反論2:時枝記事では、通常の意味の数列の収束は求められていない。というか、むしろ収束しない数列を積極的に扱うところに記事の価値があると思うよ
(例えば >>114 ”どんな実数を入れるかはまったく自由”,"もちろんでたらめだって構わない"だ。だから、「数列の収束」は求められていない)
3)反論3:その証拠に、引用した時枝記事>>114-115>>173では、”収束”という用語は一切使われていない!
4)反論4:なお、収束しない数列でも極限を考えることは可能だよ。>>403に引用した(下記)
省4
466(2): 現代数学の系譜11 ガロア理論を読む 2016/11/26(土)08:44 ID:Py08+Ohv(9/40) AAS
>>465 つづき
横に書けば
(命題A)→(命題B)
ところで
・(命題A)宝くじが当たって1億円 →(命題B)大金持ちになって、東京都内のマンションか一戸建てを持てる
という命題を考えてみよう
まず、命題Aが問題となる。”東京都内のマンションか一戸建て”で、1億円以下の物件があれば、命題全体としては真だ。
省9
480(7): 現代数学の系譜11 ガロア理論を読む 2016/11/26(土)17:26 ID:Py08+Ohv(17/40) AAS
>>473-475
おっちゃん、どうも。スレ主です。
なんだ、バスの運転のアルバイトしていると思ったぜ(^^;
ところで、有限だったら、話は簡単だ
そして、代数では有限の場合も多い
無限数列のしっぽでの同値類分類:数列のしっぽが一致すれば同値=つまりは、数列の最後の数が一致するかどうか
有限数列であれば、なんの問題もない。だが、可算無限個の箱に入った数列ではどうか?
省13
487(1): 現代数学の系譜11 ガロア理論を読む 2016/11/26(土)18:51 ID:Py08+Ohv(22/40) AAS
>>485
>スレ主は(R^Nの)任意の無限数列が出題可能であると仮定しているのでしょう?
当然。>>114 「可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.もちろんでたらめだって構わない.」とあるとおり
その後の記述は意味がわからん
540(7): 2016/11/27(日)09:59 ID:C7ghjjL/(1/11) AAS
>>480
>どうやって、無限数列のしっぽを見分けるのか?
>(時枝記事の>>114 推移律チェックは、「無限数列のしっぽが見分けられたら」
>が前提であることを、再度注意しておくよ)
>>114の記事の
>2.続けて時枝はいう
> 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別して
省15
548(9): 現代数学の系譜11 ガロア理論を読む 2016/11/27(日)12:58 ID:dKz7cXDk(24/37) AAS
>>540 >>542-545
おっちゃんらしい外し方だな
当方が、>>480で聞いたことは、下記
”どうかおっちゃんの数学センスをみせてくれよ(^^;
どうやって、無限数列のしっぽを見分けるのか?
(時枝記事の>>114 推移律チェックは、「無限数列のしっぽが見分けられたら」が前提であることを、再度注意しておくよ)”
これを、時間の順でステップ分けして書くと
省13
568(2): 2016/11/27(日)16:31 ID:C7ghjjL/(6/11) AAS
>>548
>どうやって、無限数列のしっぽを見分けるのか?
>(時枝記事の>>114 推移律チェックは、「無限数列のしっぽが見分けられたら」が前提であることを、再度注意しておくよ)”
Nで1以上の自然数全体の集合を表わす。xy平面 R^2 上で、すべての n∈N に対して、x座標がnの点 P(n) を通りx軸に垂直
な直線 L(n) を引く。直線 L(n) 上の1点から R^2 上の右側に向けx座標を増加させながら曲線 C(n) を引く。
いわゆる、幾何的には高校で習うような関数のグラフを考えることになる。すると、各 C(n) n∈N に対して、
数列空間 R^N の点 s=(s_1, s_2, s_3,…) の全体が構成される。そこでスレ主が>>548で
省11
606(2): 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)10:41 ID:6Rgz8i9T(2/41) AAS
>>605 つづき
で、例えば、話は変わるが、仮に、下記”超越数かどうかが未解決の例”「e+π、e-πが有理数であるのか無理数であるのか証明されていない」を認めるとしよう
また、十進法で、下記”有理数”で「有限小数または循環小数のいずれかとなる」ことも認めよう。
もし、0が続くことを循環小数に含めるなら(1/3=0.333・・・の類似)、循環小数かどうかを見極めることができるなら、有理数であるのか無理数であるのか見分けることが可能だということだ
つまり、実数を無限小数に展開したときに、そのしっぽを見れば、循環小数かどうかを見極めることができ、有理数か否か判定可能
ところが、「e+π、e-πが有理数であるのか無理数であるのか証明されていない」のだから、現代数学は、いまだe+π、e-πの少数展開のしっぽが循環小数かどうかを見極める方法を持たないということだ
これは、>>575 時枝解法での可算無限のしっぽの見分け>>114が、箱に0〜9の極簡単なミニモデルでさえも、現代数学では不可という例示だ
省12
610(1): 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)10:56 ID:6Rgz8i9T(5/41) AAS
>>608 つづき
さらに、箱に0〜9で有限数列 a0,a1,a2,a3,・・・・,anを考えてみよう
1.逆に、数列の頭での同値類を考えよう。>>114の2項にならって、推移律をチェックすることは容易だ
2.決定番号は、類別の同値類の代表元Ad=(a0,a1,a2,a3,・・am,・・,an)と、その類の任意の元A'=(a0,a'1,a'2,a'3,・・a'm,・・,a'n) との比較で、
(a0,a1,a2,a3,・・am)と(a0,a'1,a'2,a'3,・・a'm)とが一致するとき(当然これ(a'm)以降は不一致)に、決定番号をmとする
3.決定番号mの確率分布を考えると、m=1の確率が一番高く、m=1の場合の数は、10^n-10^(n-1)
(説明:10^nは、a1からanまでの順列の場合の数で、10^(n-1) は、a2からanまでの順列の場合の数で、決定番号2以上の順列の場合の数を除いている)
省5
614(1): 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)11:15 ID:6Rgz8i9T(9/41) AAS
>>605つづき
ところで
<数学は、同値を定義し、推移律を確認すれば終わりなのか?>
1.同値を定義し、推移律を確認したところから、数学が始まるのでは?
2.例えば、下記サーストンによる幾何化予想、コンパクト3次元多様体の8つの部分多様体による分類。これはまさに上記の例では?
(同値を定義し、推移律を確認したところから、数学が始まる)
3.だから、>>114の”同値を定義し、推移律を確認すれば終わり”という書き方は、有限を扱うならまだしも、可算無限を扱うには、あまりにも粗雑だろう
省6
638: 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)15:18 ID:6Rgz8i9T(32/41) AAS
>>114 あと、いままで押さえて言ってない話が、計算複雑性理論
「〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.」>>114
は、計算複雑性理論からは現実的実行は無理だよ(実行不可能)
これは、数学的可否の理論よりずれているから、いままで出さなかったが
外部リンク:ja.wikipedia.org
計算複雑性理論
計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。
省7
651: 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)18:40 ID:6Rgz8i9T(39/41) AAS
>>647
時枝記事の問題点>>114-115 を、まとめておく
1.そもそも、可算無限の数列のしっぽなんて、「同値から推移律確認! はいおわり」 それですむ話じゃないだろう
2.コーシー列はヒルベルト空間内だが、時枝記事のR^Nはヒルベルト空間外。ヒルベルト空間外の数列は扱いが難しい。ま、そこらがトリックのネタだろう
3.”しっぽが一致する”を実際の数列について、判別する方法(実行方法)が与えられていない(絵に描いた餅だ。数列の最初から見て行っては終わらない)
4.決定番号があやしい。特に、決定番号の確率分布がすそが重い(超ヘビー)確率分布になるから、99/100が言えない(∵大数の法則も中心極限定理も不成立だから)
5.さらに、確率分布の変数として、決定番号を見たときに、定義域は[1, ∞)となる。だから、∞まで考える必要がある。この点からも、99/100は簡単に言えない
省3
656: 現代数学の系譜11 ガロア理論を読む 2016/12/03(土)19:42 ID:6Rgz8i9T(40/41) AAS
>>650
はいはい
訂正しておくよ
(訂正開始)
2016年の現時点では、ある実数が、下記のような収束級数として、与えられたときに、e+πなどは、無限小数展開で、有理数であるのか無理数であるのか証明されていない」、つまり判別できない
有理数は、無限小数展開で、循環小数になることが分かっている(「数の体系の広がり, 周期積分, そして整数論-- 代数と幾何と解析の交わる世界--」落合理 P2より)
だから、e+πなどは、無限小数展開のすその方で、循環小数になるか否か現時点では不明
省23
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s