[過去ログ]
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net http://rio2016.5ch.net/test/read.cgi/math/1477804000/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
119: 現代数学の系譜11 ガロア理論を読む [sage] 2016/11/05(土) 11:16:31.88 ID:DzICE8Th >>105 若林誠一郎先生関連 ところで、これが落ちていた 若林先生の下記は、従来からのC∞-distributionの枠組みで、cut-offシンボルをもつ擬微分作用素を用いて,解析函数-佐藤超函数の枠組みと同様のことができるという 繰り返すが、超局所解析は、C∞-distributionの枠組みでも可能だと いま、こっちが世界の主流かも・・・ http://www.math.tsukuba.ac.jp/~wkbysh/cma.pdf 佐藤超函数の空間における古典的超局所解析について (数理解析研究所講究録, 1336, 2003年, pp58-72) 若林誠一郎 筑波大 pdf (抜粋) 解析函数-佐藤超函数の枠組みにおける偏微分方程式の研究においては,代数解析的な取り扱いが主流であって,従来からのC∞-distributionの枠組みにおける方法を適用することは難しいと考えられていた. C∞-distributionの枠組みにおける最も重要な手法は(微積分学の基本定理の一つの表現である)部分積分であり,これにより得られる種々のエネルギー評価(アプリオリ評価)を用いて,偏微分方程式の研究がなされてきた. その後,超局所解析的取り扱いにより,偏微分方程式論が大に発展した.C∞-distributionの枠組みにおける超局所解析においては, cut-off函数及びそれをシンボルとする擬微分作用素を用いることができ,これによって問題を容易に超局所化できる. シンボル・カリキュラス(本質的には部分積分)を適用して,超局所的考察(標準形への帰着等)によりエネルギー評価等を導き,またパラメトリックスを構成することにより,偏微分方程式を研究することが可能になった. ここで述べたような超局所解析を古典的超局所解析と呼ぶことにする. 解析函数-佐藤超函数の枠組みでの偏微分方程式の研究に古典的超局所解析的手法を用いるために, cut-offシンボルをもつ擬微分作用素を用いて, [4]において古典的超局所解析の基礎を与えた. すなわち,我々は[4]において, H ?ormander [1]の第IX章及びTreves [3]の第V章の結果を結び付けて,その上に古典的超局所解析を確立した。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1477804000/119
120: 現代数学の系譜11 ガロア理論を読む [sage] 2016/11/05(土) 11:30:42.41 ID:DzICE8Th >>119 関連 佐藤先生が出てこないので、はてなと思っていたんだ https://ja.wikipedia.org/wiki/%E8%B6%85%E5%B1%80%E6%89%80%E8%A7%A3%E6%9E%90 超局所解析 数学の解析学の分野における超局所解析(ちょうきょくしょかいせき、英: microlocal analysis)とは、変数係数の線型および非線型偏微分方程式の研究に関するフーリエ変換に基づく、1950年代以後に発展した技術を伴う解析のことを言う。 超函数や、擬微分作用素、波面集合(英語版)、フーリエ積分作用素、振動積分作用素、パラ微分作用素の研究などが含まれる。 「超局所」(microlocal)という語は、空間内の位置についての局所化のみならず、ある与えられた点の余接空間方向についての局所化を意味する。このことは、次元が 1 よりも大きい多様体に対して、重要な意味を持つ。 外部リンク lecture notes by Richard Melrose newer lecture notes by Richard Melrose https://en.wikipedia.org/wiki/Microlocal_analysis Microlocal analysis From Wikipedia, the free encyclopedia In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes generalized functions, pseudo-differential operators, wave front sets, Fourier integral operators, oscillatory integral operators, and pa radifferential operators. The term microlocal implies localisation not only with respect to location in the space, but also with respect to cotangent space directions at a given point. This gains in importance on manifolds of dimension greater than one. External links lecture notes by Richard Melrose newer lecture notes by Richard Melrose http://rio2016.5ch.net/test/read.cgi/math/1477804000/120
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.021s