[過去ログ]
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net http://rio2016.5ch.net/test/read.cgi/math/1477804000/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
107: 現代数学の系譜11 ガロア理論を読む [sage] 2016/11/05(土) 10:38:24.54 ID:DzICE8Th >>64 >>単に世間にあるモノイドの文字の連接が、可算無限数列においても可能だということを示しただけ >そのような連接が可能であることは俺も分かっている。 >しかし、君のやり方では不完全であり、かつ間違っており、 えーと、>>51-54だったね. 2つ添え字ijを使う頻出テクを使って書き直すよ >>51の修正 5.ところで、2つ添え字ijを使う頻出テクを使えば、下記にできる Z'={z_1,1=3, z_1,2=1, z_1,3=4, z_1,4=1, z_1,5=5, z_1,6=9, z_1,7=2, z_1,8=6, z_1,9=5, z_1,10=3, z_1,11=5, z_1,12=9,・・・ z_2,1=2, z_2,2=7, z_2,3=1, z_2,4=8, z_2,5=2, z_2,6=8, z_2,7=1, z_2,8=8, z_2,9=2, z_2,10=8, z_2,11=4, z_2,12=6,・・・} 6.Z'→X'∪Y'とみて二つの集合に分ける X'={z_1,1=3, z_1,2=1, z_1,3=4, z_1,4=1, z_1,5=5, z_1,6=9, z_1,7=2, z_1,8=6, z_1,9=5, z_1,10=3, z_1,11=5, z_1,12=9,・・・・・・} Y'={z_2,1=2, z_2,2=7, z_2,3=1, z_2,4=8, z_2,5=2, z_2,6=8, z_2,7=1, z_2,8=8, z_2,9=2, z_2,10=8, z_2,11=4, z_2,12=6,・・・} 7.番号をつけ直して X'={x'_1=3, x'_2=1, x'_3=4, x'_4=1, x'_5=5, x'_6=9, x'_7=2, x'_8=6, x'_9=5, x'_10=3, x'_11=5, x'_12=9,・・・} Y'={y'_1=2, y'_2=7, y'_3=1, y'_4=8, y'_5=2, y'_6=8, y'_7=1, y'_8=8, y'_9=2, y'_10=8, y'_11=4, y'_12=6,・・・} これで、上記5項〜7項は可能だ。 http://rio2016.5ch.net/test/read.cgi/math/1477804000/107
108: 現代数学の系譜11 ガロア理論を読む [sage] 2016/11/05(土) 10:39:51.89 ID:DzICE8Th >>107 つづき そこで、整列可能定理を仮定し、整列集合を考える(下記) https://ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88 整列集合 (抜粋) 数学において、整列順序付けられた集合または整列集合(せいれつしゅうごう、英: well-ordered set)とは、整列順序を備えた集合のことをいう。 集合に整列順序が与えられれば、そこでは集合の全ての元に対する命題の超限帰納法を用いた証明を考えることができる。 (選択公理に同値な)整列可能定理は、任意の集合が整列順序付け可能であることを主張するものである。整列可能定理はまたツォルンの補題とも同値である。 (引用終り) 整列可能定理を使って、集合Z'を整列集合とする。 簡単に、>>62 で示したように、(1,1)<(1,2)<・・・・<(1,n)<・・・< (2,1)<(2,2)<・・・・<(2,n)<・・・ 蛇足だが、i<jのとき、(n,i)<(n,j) で、(i,n)<(j,n) とすれば、上記の整列になる (1,1)<(1,2)<・・・・<(1,n)<・・・< (2,1)<(2,2)<・・・・<(2,n)<・・・ を、上記の5項に適用して Z_1,1 <Z_1,2 <・・・・<Z_1,n <・・・< Z_2,1 <Z_2,2 <・・・・<Z_2,n <・・・ これも蛇足だが Z_1,1 <Z_1,2 <・・・・<Z_1,n <・・・ ↓ X_1 <X_2 <・・・・<X_n <・・・ かつ Z_2,1 <Z_2,2 <・・・・<Z_2,n <・・・ ↓ Y_1 <Y_2 <・・・・<Y_n <・・・ と書き直せばいいんでないの? 要は、整列可能定理を使って、整列集合を考える。これも大学数学では頻出テク http://rio2016.5ch.net/test/read.cgi/math/1477804000/108
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s