[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 77 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
1
(5): 10/31(金)11:36 ID:0+I+3mSE(1/18) AAS
(前“応援”スレが、1000又は1000近くになったので、新スレ立てる)
前スレ:Inter-universal geometry と ABC予想 (応援スレ) 76
2chスレ:math
詳しいテンプレは、下記旧スレへのリンク先ご参照
Inter-universal geometry と ABC予想 (応援スレ) 52
2chスレ:math
<IUT最新文書>
About the study of IUT by Ivan Fesenko 外部リンク[pdf]:ivanfesenko.org 外部リンク:ivanfesenko.org
外部リンク:www.kurims.kyoto-u.ac.jp
望月新一@数理研
省23
2
(4): 10/31(金)11:37 ID:0+I+3mSE(2/18) AAS
つづき
math_jinさん 情報早いな
外部リンク:x.com
math_jin
ICM2030招致委員会
ICM2030 (International Congress of Mathematicians 2030) の招致・開催に向けて設置されました.本ページでは招致に向けた活動について情報共有を行います.
外部リンク:mathsoc.jp
午前11:26 · 2025年7月30日

(参考)
応援スレ67 2chスレ:math
省15
3
(2): 10/31(金)11:37 ID:0+I+3mSE(3/18) AAS
つづき
(参考)
応援スレ67 2chスレ:math
>【検証】どうして望月新一はICM2022で何の賞もなかったの?
>「100%の自信をもって」アクセプトしたんだよね?
>「アリの這い出る隙間もないほど完璧な」査読を行ったんだよね?

1)囲碁将棋に例えると、難しい詰将棋があるとして、囲碁の人に説明しても理解されないが如し
(あるいは、逆に将棋の人に難しい詰碁を説明するが如し)
(一つ一つのロジックは単純でも、数十手以上とか長手数になると、その道のプロ以外には理解が難しいってこと)
2)21世紀の数学は専門が細分化されているから、遠アーベルというゲームのルールに疎いおっさん(ショルツェ氏)は
省11
4
(1): 10/31(金)11:38 ID:0+I+3mSE(4/18) AAS
つづき
外部リンク:mainichi.jp
望月教授「ABC予想」証明 斬新理論で数学界に「革命」 京大数理研「完全な論文」【松本光樹、福富智】毎日新聞2020年4月3日
(抜粋)
画像リンク[jpg]:cdn.mainichi.jp
会見には同研究所の柏原正樹特任教授と、玉川安騎男教授が出席。
2018年にはピーター・ショルツ独ボン大教授が望月論文に疑義を唱え、その行方に注目が集まった。玉川教授は「望月教授自身が反論もしており、(ショルツ教授からの)再反論もない」などとし、論文の価値判断に影響はないとの認識を示した。
玉川教授は「全く新しい理論で、さらなるインパクトを生み出す可能性がある。この研究所を中心として世界的に研究が活性化すれば喜ばしい」と胸を張った。
動画リンク[YouTube]
数学の難問ABC予想 京大教授が証明 30年以上未解決 2020/04/03 FNNプライムオンライン
省14
5
(1): 10/31(金)11:39 ID:0+I+3mSE(5/18) AAS
つづき

参考
外部リンク[html]:www.maths.nottingham.ac.uk
宇宙際タイヒミューラー理論への誘い(いざない)2021-08-31?2021-09-03
Confirmed participants include:
Atsushi Shiho (Univ. Tokyo, Japan),

外部リンク[html]:www.maths.nottingham.ac.uk
宇宙際タイヒミューラー理論サミット2021 2021-09-07?2021-09-10
Confirmed participants include:
Atsushi Shiho (Univ. Tokyo, Japan),
省31
6: 10/31(金)11:39 ID:0+I+3mSE(6/18) AAS
つづき

(参考)(この中村博昭は、必読基礎文献です)
外部リンク[pdf]:www.mathsoc.jp
グロタンディーク・タイヒミュラー理論の話題から
中村博昭(大阪大学理学研究科)
第63回代数学シンポジウム(於東京工業大学,2018年9月)報告集所収
1.Introduction
代数曲線やそのモジュライ空間のエタール基本群を通じて,数体の絶対ガロア群の数論幾何的な働きが大きく映し出される現象が,1980年代に等により指摘されて以来,数論的基本群を中心に,遠アーベル幾何学,ガロアの逆問題などの問題群の理解も深められてきた.
1.2道草(復元の話)
筆者が最初に代数学シンポジウムで話をさせて頂いたのは,北大で1989年に開催された第35回代数学シンポジウムであった.代数学シンポジウム報告集は,現時点で電子的に2004年以降のものは代数分科会のホームページで入手可能だが,それ以前のものは紙媒体で大学毎の数学図書室に所蔵されているものが(ただし所蔵状態は所によりまちまちのようで)ある.幸いにして,筆者の上記の報告集の記事は英訳を[29]として出版する機会を得た(20年後の2009年にケンブリッジの研究所で行った遠アーベル幾何の入門講義の報告を兼ねている.このときの主な内容はGrothendieckの遠アーベル幾何の基本予想「数論的基本群の純群論的構造から双曲型代数曲線を復元する」を,種数0の場合と,楕円曲線ひく1点の場合に解決したことの報告であった.
省18
7
(1): 10/31(金)11:40 ID:0+I+3mSE(7/18) AAS
つづき

History
Moduli spaces for Riemann surfaces and related Fuchsian groups have been studied since the work of Bernhard Riemann (1826–1866), who knew that
6g−6 parameters were needed to describe the variations of complex structures on a surface of genus g≥2.
The early study of Teichmüller space, in the late nineteenth–early twentieth century, was geometric and founded on the interpretation of Riemann surfaces as hyperbolic surfaces. Among the main contributors were Felix Klein, Henri Poincaré, Paul Koebe, Jakob Nielsen, Robert Fricke and Werner Fenchel.

The main contribution of Teichmüller to the study of moduli was the introduction of quasiconformal mappings to the subject. They allow us to give much more depth to the study of moduli spaces by endowing them with additional features that were not present in the previous, more elementary works. After World War II the subject was developed further in this analytic vein, in particular by Lars Ahlfors and Lipman Bers. The theory continues to be active, with numerous studies of the complex structure of Teichmüller space (introduced by Bers).

The geometric vein in the study of Teichmüller space was revived following the work of William Thurston in the late 1970s, who introduced a geometric compactification which he used in his study of the mapping class group of a surface. Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmüller space, and this is a very active subject of research in geometric group theory.

外部リンク:ja.wikipedia.org
p進タイヒミュラー理論
p進タイヒミュラー理論(ピーしんタイヒミュラーりろん)は、数学者の望月新一によって開発された数学の理論である。この理論は、古典的なタイヒミュラー理論をp進数体の世界に拡張したもので、p進曲線とその構造を決定する係数の「一意化」を扱う理論である。
省4
8
(2): 10/31(金)11:41 ID:0+I+3mSE(8/18) AAS
つづき
(参考)
外部リンク:hiroyukikojima.hatenablog.com/entry/20130424/1366809361
hiroyukikojima’s blog
2013-04-24
ABC予想入門
今回、皆さんにお勧めしたい本は、黒川さんと小山信也さんの共著『ABC予想入門』PHPサイエンス・ワールド新書である。
黒川先生発案の絶対数学(F1スキーム理論)が、数学者コンヌを中心に大きく発展した。第二の進展は、京都大学数理解析研究所の望月新一氏によるabc予想解決宣言である。黒川さんによれば、望月氏もF1数学を使っているとのこと

(参考)<追加 数論幾何入門の必読参考書>
外部リンク:www.morikita.co.jp
省8
9: 10/31(金)11:42 ID:0+I+3mSE(9/18) AAS
つづき

外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
宇宙際Teichm¨uller 理論入門(Introduction to Inter-universal Teichm¨uller Theory)
星裕一郎 2010
p11
「“輸送” の例を観察するために,
§2 で考察した (Gk ↷ O▷kの同型物である) フロベニオイドを 2 つ
†G ↷ †M,‡G ↷ ‡M 用意しましょう. あえて大袈裟に言えば,
†G ↷ †Mや ‡G ↷ ‡M は, それぞれ 1 つの “数学の世界/宇宙” です.
“p 進局所体の乗法的な数論の研究” とは, 大雑把には,
省35
1-
あと 993 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.020s