[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
7(1): 10/31(金)11:40 ID:0+I+3mSE(7/18) AAS
つづき
History
Moduli spaces for Riemann surfaces and related Fuchsian groups have been studied since the work of Bernhard Riemann (1826–1866), who knew that
6g−6 parameters were needed to describe the variations of complex structures on a surface of genus g≥2.
The early study of Teichmüller space, in the late nineteenth–early twentieth century, was geometric and founded on the interpretation of Riemann surfaces as hyperbolic surfaces. Among the main contributors were Felix Klein, Henri Poincaré, Paul Koebe, Jakob Nielsen, Robert Fricke and Werner Fenchel.
The main contribution of Teichmüller to the study of moduli was the introduction of quasiconformal mappings to the subject. They allow us to give much more depth to the study of moduli spaces by endowing them with additional features that were not present in the previous, more elementary works. After World War II the subject was developed further in this analytic vein, in particular by Lars Ahlfors and Lipman Bers. The theory continues to be active, with numerous studies of the complex structure of Teichmüller space (introduced by Bers).
The geometric vein in the study of Teichmüller space was revived following the work of William Thurston in the late 1970s, who introduced a geometric compactification which he used in his study of the mapping class group of a surface. Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmüller space, and this is a very active subject of research in geometric group theory.
外部リンク:ja.wikipedia.org
p進タイヒミュラー理論
p進タイヒミュラー理論(ピーしんタイヒミュラーりろん)は、数学者の望月新一によって開発された数学の理論である。この理論は、古典的なタイヒミュラー理論をp進数体の世界に拡張したもので、p進曲線とその構造を決定する係数の「一意化」を扱う理論である。
通常の宇宙際タイヒミュラー理論は、リーマン面を研究対象とし、そのフクシアン一意化、すなわちリーマン面を上半平面から普遍被覆空間への等角写像によって記述することを目指す。この一意化は、リーマン面上の特別な性質を持つ線束(正準固有束)の存在と密接に関係している。この線束は、複素共役によって不変であり、モノドロミー表現が準フクシアンであるという特徴を持つ。
p進タイヒミュラー理論では、古典的なアイデアがp進曲線の文脈で再構築され。具体的には、リーマン面における複素共役の役割は、p進曲線の理論ではフロベニウス自己準同型が担う。同様に、準フクシアンという条件は、積分条件によって置き換えられる。
(引用終り)
つづく
上下前次1-新書関写板覧索設栞歴
あと 995 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.016s