[過去ログ]
スレタイ 箱入り無数目を語る部屋18 (1002レス)
スレタイ 箱入り無数目を語る部屋18 http://rio2016.5ch.net/test/read.cgi/math/1710632805/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
828: 132人目の素数さん [] 2024/04/12(金) 12:10:00.88 ID:aptMDkCS ぐだぐだ言い訳する暇があったら >>822に回答せよ。>>733を書いた責任を取りなさい。できないならば、議論は打ち切る http://rio2016.5ch.net/test/read.cgi/math/1710632805/828
829: Maitrayaniputra [sage] 2024/04/12(金) 12:53:07.11 ID:KwiFC5Wt >>822の「(互いに)独立」の定義は>>824で 「(共通の確率空間上の実)確率変数の族 { Xλ | λ ∈ Λ} が独立であるとは、 任意の実数 a_λ と添字集合 Λ の任意の有限部分族 {λ1, …, λn} に対して P(X_λ1<a_λ1,X_λ2<a_λ2,…,X_λn<a_λn)=P(X_λ1<a_λ1)P(X_λ2<a_λ2)…P(X_λn<a_λn) が成り立つこと」と示されたので、この後は 議論できぬものは降りていただき 議論できるものだけが議論することと致そう さて>>820のSubhutiの仮定については、決定番号、すなわち 「それ以降のすべてのX_nにてr(X_n)₌1となる最小の自然数」 より小さい自然数からなる有限部分集合にて成り立つのではないか と考えることもできる ただその場合 「Y_nのnがXの決定番号より小さい確率」が求まるのか?という疑問がある 「Y_nのnがXの決定番号より小さい確率」が求まらないなら、 P(Yn=1)が求まらない、とせざるを得ないが如何か? http://rio2016.5ch.net/test/read.cgi/math/1710632805/829
830: Maitrayaniputra [sage] 2024/04/12(金) 12:59:29.67 ID:KwiFC5Wt Q1が非可測(?)ゆえ求まらない場合とした場合 Q2はそもそも質問として意味をなさないだろうが これまた如何か? http://rio2016.5ch.net/test/read.cgi/math/1710632805/830
831: 132人目の素数さん [sage] 2024/04/12(金) 18:38:11.50 ID:8F6d6rOi Xnたちが独立なら話は簡単で r(X),X1,X2,...,Xn,...は独立だから、Sが有限のときは P(Y1=1)=1/#S でしょ http://rio2016.5ch.net/test/read.cgi/math/1710632805/831
832: 132人目の素数さん [sage] 2024/04/12(金) 19:05:24.51 ID:8F6d6rOi ところで、確率空間は具体的に固定されてないとダメくんはこの出題には文句言わないの? 確率空間が具体的に書かれてないから確率は計算できないとかいういつもの持論を展開してよ! http://rio2016.5ch.net/test/read.cgi/math/1710632805/832
833: 132人目の素数さん [sage] 2024/04/12(金) 22:19:06.15 ID:8F6d6rOi この問題はΩ={0}のときに、確率変数を捏造してるからだめだってさ http://rio2016.5ch.net/test/read.cgi/math/1710632805/833
834: 132人目の素数さん [sage] 2024/04/13(土) 02:02:37.23 ID:OSQZh4Mv >>831 微妙に正確さが足りなかった Sを有限集合として、可測空間は常に(S,2^S)を使うとする {X_n}_n∈ℕをS値の確率変数たちとして、独立に一様分布するとし、 r: S^ℕ→S^ℕを問題の代表元を取る関数とする kを任意の自然数とする このとき、 r(-)(k): S^ℕ→Sが可測関数ならば、X_k=r(X)(k)は事象になり、P(X_k=r(X)(k))=1/#S さらに、k1,k2が両方とも可測関数の条件を満たしていれば、 X_k1=r(X)(k1)とX_k2=r(X)(k2)は独立 http://rio2016.5ch.net/test/read.cgi/math/1710632805/834
835: Mahakatyayana [sage] 2024/04/13(土) 07:49:14.86 ID:BGUijA3r >>834 >Sを有限集合として、可測空間は常に(S,2^S)を使うとする >{X_n}_n∈ℕをS値の確率変数たちとして、独立に一様分布するとし、 >r: S^ℕ→S^ℕを問題の代表元を取る関数とする >kを任意の自然数とする >このとき、 >r(-)(k): S^ℕ→Sが可測関数ならば、 >X_k=r(X)(k)は事象になり、 >P(X_k=r(X)(k))=1/#S >さらに、k1,k2が両方とも可測関数の条件を満たしていれば、 >X_k1=r(X)(k1)とX_k2=r(X)(k2)は独立 なるほど、結局、rが可測か否か、に尽きるわけだな で、rは可測なのかね? もし可測でないとしたら どうやってそれを示すのかね? P.S. 本日は外出するので、その間に考えておいてくれたまえ http://rio2016.5ch.net/test/read.cgi/math/1710632805/835
836: 132人目の素数さん [] 2024/04/13(土) 11:16:13.14 ID:AkaTH9ql スレ主です >>733より再録 Gautama Siddhārtha 1.可算無限個の確率変数 X1,X2,... . 2.それぞれは、Sに一様分布 3.それぞれは互いに独立 さてこのとき、S^Nからその尻尾同値類の代表元への関数rが存在する そして、s∈S^Nとr(s)を比較することにより s^nから2^nへの関数yで s(n)=r(s)(n)のとき、1 s(n)=r(s)(n)でないとき、0 となるものが存在する X=(X1,X2,・・・)とし Ynをy(X)(n)をとする さて Q1.Ynの分布およびYn=1となる確率を示せ Q2.Ynそれぞれは独立か否か? (引用終り) さて、以前”0”(ゼロ?)を名乗る人が来て 議論をしたのだが、時枝氏は彼の記事の後半で下記 https://imgur.com/a/8bqlb08 数学セミナー201511月号「箱入り無数目」 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. いったい無限を扱うには, (1)無限を直接扱う, (2)有限の極限として間接に扱う, 二つの方針が可能である. 確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ. (独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.) しかし,素朴に,無限族を直接扱えないのか? 扱えるとすると私たちの戦略は頓挫してしまう. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか−−他の箱から情報は一切もらえないのだから. 勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる. ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」 と記す ”0”氏は、これが前半とは全く無関係だと宣うので、『ちょっと確率論を勉強してから来てよ』 と 追い返したことがあるのです Gautama Siddhārtha氏は、”0”氏の輪廻転生かと思いました 時枝氏は後半で、『n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか−−他の箱から情報は一切もらえないのだから』 と言い切っている。この話をしたいのでしょうかね? http://rio2016.5ch.net/test/read.cgi/math/1710632805/836
837: 132人目の素数さん [sage] 2024/04/13(土) 18:41:48.31 ID:htJ2ZUAN >>835 rじゃなくてr(-)(k)な 可測になるとは限らないが、rの中身によっては可測になる場合があるから、可測ではないは証明できない http://rio2016.5ch.net/test/read.cgi/math/1710632805/837
838: 132人目の素数さん [sage] 2024/04/13(土) 18:52:51.54 ID:htJ2ZUAN >>835 ていうかお前も考えろよ http://rio2016.5ch.net/test/read.cgi/math/1710632805/838
839: 132人目の素数さん [] 2024/04/13(土) 23:56:26.23 ID:AkaTH9ql >>835 >>r: S^ℕ→S^ℕを問題の代表元を取る関数とする 代表元は、同値類の代表で 代表元を取る関数の存在は、いまの場合選択公理を仮定する 即ち 選択関数を仮定すること なので 代表元を取る関数=選択関数 r:S^ℕ/〜→s(c) とすべきではないか? ここに、s(c)は下記より借用した通り ”切断を s で表せば,各同値類 c に対して [s(c)] = c” ”元 s(c) は c の代表元 (representative) ” である 可測か非可測かを論じるべきは、上記”選択関数 r:S^ℕ/〜→s(c)”についてであるべきだろう (下記のヴィタリ集合をご参照) (参考) https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%A1%9E 同値類 この分割,同値類たちの集合,を S の 〜 による商集合 (quotient set) あるいは商空間 (quotient space) と呼び,S/〜 と表記する. 同値関係 R に関する X のすべての同値類からなる集合を X/R と書き,X の R による商集合 (quotient set of X by R, X modulo R) と呼ぶ[5]. X から X/R への各元をその同値類に写す全射 x → [x] は標準射影と呼ばれる. 各同値類の元を(しばしば暗黙に)選ぶと,切断(英語版)と呼ばれる単射が定義される.この切断を s で表せば,各同値類 c に対して [s(c)] = c である.元 s(c) は c の代表元 (representative) と呼ばれる.切断を適切に取って類の任意の元をその類の代表元として選ぶことができる. https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 構成と証明 有理数体 Q は実数体 R の普通の加法についての部分群を成す。なので加法の商群 R/Q (つまり、有理数分の差を持つ実数同士を集めた同値類による剰余群) は有理数集合の互いに交わらない"平行移動コピー"によって出来ている。この群の任意の元はある r ∈ R についての Q + r として書ける。 R/Q の元は R の分割の1ピースである。そのピースは不可算個あり、各ピースはそれぞれ R の中で稠密である。R/Q の元はどれも [0, 1] と交わっており、選択公理によって [0, 1] の部分集合で、R/Q の代表系になっているものが取れる。このようにして作られた集合がヴィタリ集合と呼ばれているものである。 http://rio2016.5ch.net/test/read.cgi/math/1710632805/839
840: 132人目の素数さん [] 2024/04/14(日) 09:01:47.49 ID:g/SCaNYS >>839 訂正と補足 訂正: 選択関数 r:S^ℕ/〜→s(c) ↓ 選択関数 r:S^ℕ/〜→∪{s(c)} 補足:∪{s(c)}は、下記の東北大 尾畑研のテキストに従った。流儀はいろいろあるようです。 ja.wikipedia 選択公理は、尾畑研とほぼ同じ en.wikipedia Choice functionでは、multivalued mapによる記述があります (参考) https://www.math.is.tohoku.ac.jp/~obata/student/subject/ 東北大学大学院情報科学研究科 システム情報科学専攻 尾畑研究室−システム情報数理学II研究室− 基礎科目 2022年度 解析学入門 (宮城教育大学2年生向き 水曜日5講時) [3] 尾畑伸明:集合・写像・数の体系 数学リテラシーとして, 牧野書店, 2019. 授業の内容はこの本に準拠するが、絶版のため入手は困難であろう。草稿を掲載しておくので必要に応じて参照されたい。 「集合・写像・数の体系 数学リテラシーとして」の草稿(pdf) https://www.math.is.tohoku.ac.jp/~obata/student/subject/TaikeiBook/Taikei-Book_11.pdf TAIKEI-BOOK :2019/1/1(22:21) 第11章選択公理 P157 (AC2) Ω を空でない集合族とするもし∅ not∈ Ωであれば写像f:Ω →∪ΩですべてのX∈Ω に対してf(X)∈Xとなるものが存在するこの写像fを集合族Ωの選択関数という 注3)集合族Ωに対してその和集合が∪Ω=∪X∈Ω Xで定義される第4.5節を参照せよ https://www.math.is.tohoku.ac.jp/~obata/student/subject/TaikeiBook/Taikei-Book_04.pdf TAIKEI-BOOK : 2019/1/1(22:21) 第4章 写 像 4.5集合系 P67 ■和集合と積集合 集合系(Aλ|λ∈Λ)に対して少なくとも1つのAλに含まれる元をすべて集めたものをその和集合または合併集合といい 略す https://ja.wikipedia.org/wiki/%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 選択公理 https://en.wikipedia.org/wiki/Choice_function Choice function Choice function of a multivalued map Bourbaki tau function http://rio2016.5ch.net/test/read.cgi/math/1710632805/840
841: 132人目の素数さん [] 2024/04/14(日) 13:49:40.93 ID:g/SCaNYS 下記を貼っておきますね 可測関数:確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、 ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する 関数一般、普通は正則関数でなく、微分可能でもなく、連続でもない と同様に、関数の可測性は一般には保証されない (参考) https://ja.wikipedia.org/wiki/%E5%8F%AF%E6%B8%AC%E9%96%A2%E6%95%B0 可測関数 測度論の分野における可測関数(英: measurable function)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。 特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f: (R ,L)→ (R ,B) が可測関数であることを意味する。 すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している (ここで L はルベーグ可測集合全体の成す σ-代数であり、 B は R 上のボレル集合族である)。 結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 ただし任意のルベーグ可測関数 f: (R ,L)→ (R ,B) に対し f とほとんど至るところ一致するボレル可測関数 g: (R ,B)→ (R ,B) が存在するので、ルベーグ測度0の集合上での違いを無視する文脈では可測関数同士の合成は再び可測関数となる。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。 最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。 例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある[1]。 関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、 ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。 対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。 http://rio2016.5ch.net/test/read.cgi/math/1710632805/841
842: 132人目の素数さん [sage] 2024/04/15(月) 01:07:36.48 ID:7JY8sKWt >>838 そろそろなんか結果出てないんか http://rio2016.5ch.net/test/read.cgi/math/1710632805/842
843: Aniruddha [sage] 2024/04/15(月) 07:41:09.32 ID:sIIkaUye >>839-840 >代表元を取る関数=選択関数 r:S^ℕ/〜→s(c) とすべきではないか? 釈迦のrをRと置きなおせば R(x)=r([x]) とできるので問題ない >>842 >そろそろなんか結果出てないんか いいや、何も 君は? http://rio2016.5ch.net/test/read.cgi/math/1710632805/843
844: 132人目の素数さん [sage] 2024/04/15(月) 17:14:50.84 ID:7JY8sKWt >>843 r本体の可測性とかなんもわからん http://rio2016.5ch.net/test/read.cgi/math/1710632805/844
845: 132人目の素数さん [sage] 2024/04/15(月) 18:56:31.63 ID:7JY8sKWt そもそも、r自体が可測だとすると、r(X)はほとんど確実に定数なんたが、それが矛盾してるかというと、別に矛盾してないんじゃないのだろうか感はある http://rio2016.5ch.net/test/read.cgi/math/1710632805/845
846: 132人目の素数さん [sage] 2024/05/09(木) 11:15:48.94 ID:3MwLuTcY https://rio2016.5ch.net/test/read.cgi/math/1705834737/395 2024/05/07(火) <繰り返す> ・箱が一つ、サイコロの出目の数字を入れる。これを、確率変数Xとして扱う ・箱が二つ、サイコロの出目の数字を入れる。これを、確率変数X1,X2として扱う ・箱がn個、サイコロの出目の数字を入れる。これを、確率変数X1,X2,・・,Xnとして扱う ・箱が可算個、サイコロの出目の数字を入れる。これを、確率変数X1,X2,・・,Xn・・として扱う 大学学部確率論の範囲だろう。ちゃんと勉強して単位を取った者なら分かる iid(独立同分布)として扱える。どの箱の的中確率も1/6 ちゃんと勉強して単位を取った者なら分かる このスタートラインに立てない 数学科オチコボレさんを相手にしても、しかたないw ;p) ahoは相手しない http://rio2016.5ch.net/test/read.cgi/math/1710632805/846
847: 132人目の素数さん [sage] 2024/05/11(土) 18:10:20.84 ID:gRKhHbky ひろゆきの無能力とは 装飾してごまかしていますが本質的にはこれです。 最初から相手と議論する気はなく、自分が正しい事を証明したいというわけでもなく、議論において勝つ事のみを目的としたやり方で世間一般ではそれを詭弁 と言います。 いわゆる、詐欺師がよくやる手法ですね。彼が議論において常に安全圏を確保して話をする事からもそうです。都合が悪くなると必ず上記にを行い逃げています。 基礎論婆とウマシカ野郎の論法 http://rio2016.5ch.net/test/read.cgi/math/1710632805/847
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 155 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.008s