[過去ログ] フェルマーの最終定理の簡単な証明4 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
883: 日高 2020/01/14(火)10:53 ID:8O8IjhZw(4/8) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
したがって、x^2*1=(z+y)(z-y)となる。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
884: 日高 2020/01/14(火)10:53 ID:8O8IjhZw(5/8) AAS
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}となる。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
∴pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
885(3): 2020/01/14(火)13:34 ID:OO5Lvkus(1) AAS
>>882
> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
z^p*1のみを検討すればよいです。
その理由を証明の中に書いてください。
886: 2020/01/14(火)19:22 ID:3IqQFT1y(1) AAS
>>882
> >881
> >ということは、3 の時も 4 の時も同じこと z^p までやるのですか?
> 元の証明にはないですね。
>
> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
という妄想。根拠なし。
887(3): 2020/01/14(火)20:48 ID:LebP3GTt(1/2) AAS
>>880
考えてそのあとどうなるんですか?
まさかこれで終わりじゃないですよね。
888(4): 2020/01/14(火)21:16 ID:A6QNiooL(2/3) AAS
>>882
> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
証明の手順を見てみると、
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
を満たす有理数を探しています。
となると、
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
と
2={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p/2=(x+y)
省1
889(2): 日高 2020/01/14(火)21:52 ID:8O8IjhZw(6/8) AAS
>885
>> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
z^p*1のみを検討すればよいです。
その理由を証明の中に書いてください。
z^p=z^p*1=(z^p/2)*2=(z^p/3)*3だからです。
890(3): 日高 2020/01/14(火)21:55 ID:8O8IjhZw(7/8) AAS
>887
>考えてそのあとどうなるんですか?
まさかこれで終わりじゃないですよね。
z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
z^p*1のみを考えれば、よいです。
891: 2020/01/14(火)21:57 ID:/y2a+2Hq(1/3) AAS
>>889
> >885
> >> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
>
> その理由を証明の中に書いてください。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3だからです。
理由になってない。妄想。根拠なし。ゴミ老人
892: 2020/01/14(火)21:57 ID:/y2a+2Hq(2/3) AAS
>>890
> >887
> >考えてそのあとどうなるんですか?
> まさかこれで終わりじゃないですよね。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
> z^p*1のみを考えれば、よいです。
間違い。
893(3): 2020/01/14(火)21:57 ID:Yxuo3KSa(1/3) AAS
>>889 日高
> >885
> >> z^pとz^p*1と(z^p/2)*2と(z^p/3)*3は、同じなので、
> z^p*1のみを検討すればよいです。
>
> その理由を証明の中に書いてください。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3だからです。
「証明の中に書いてください」と書きました。
これを含めた証明を、それだけを読んでわかるように書いてください。
894(3): 日高 2020/01/14(火)22:00 ID:8O8IjhZw(8/8) AAS
>888
>1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
と
2={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p/2=(x+y)
の何がどう同じなので検討をしないでよいのかおしえてください。
z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
z^p*1のみを考えれば、よいです。
895(2): 2020/01/14(火)22:01 ID:/y2a+2Hq(3/3) AAS
>>894
> >888
> >1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
> と
> 2={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p/2=(x+y)
> の何がどう同じなので検討をしないでよいのかおしえてください。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
> z^p*1のみを考えれば、よいです。
嘘つきが。反省しろ
896(1): 2020/01/14(火)22:04 ID:Yxuo3KSa(2/3) AAS
>>894 日高
> >888
>>1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
> と
> 2={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p/2=(x+y)
> の何がどう同じなので検討をしないでよいのかおしえてください。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
> z^p*1のみを考えれば、よいです。
これでは説明になっていません。あなたの証明は間違いです。
897(2): 2020/01/14(火)22:13 ID:Yxuo3KSa(3/3) AAS
はっきり言えば、あなたの証明はごまかしです。いまのままでは。
898(1): 2020/01/14(火)22:13 ID:LebP3GTt(2/2) AAS
>>890
> >887
> >考えてそのあとどうなるんですか?
> まさかこれで終わりじゃないですよね。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
> z^p*1のみを考えれば、よいです。
でたらめな説明はやめてください。
何でそんなことが言えるんですか。
890では、
省4
899(1): 2020/01/14(火)22:34 ID:A6QNiooL(3/3) AAS
>>894
> >888
> >1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
> と
> 2={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p/2=(x+y)
> の何がどう同じなので検討をしないでよいのかおしえてください。
>
> z^p=z^p*1=(z^p/2)*2=(z^p/3)*3なので、
> z^p*1のみを考えれば、よいです。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)
省5
900: 2020/01/14(火)22:42 ID:dFJcvDXF(1) AAS
>>893もスルーせずにちゃんと書いてな
901(2): 日高 2020/01/15(水)08:52 ID:16OwUp8O(1/27) AAS
>893
>「証明の中に書いてください」と書きました。
これを含めた証明を、それだけを読んでわかるように書いてください。
【定理】pが奇素数のとき、x^p+y^p=z^pは、自然数解を持たない。
【証明】pは奇数なのでx^p+y^p=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}と変形できる。
z^p=z^p×1=(z^p/a)×aなので、z^p=x^p+y^pとz^p×1=x^p+y^pと(z^p/a)×a=x^p+y^pのx,y,zの比は等しい。
したがって、z^p×1=(x+y){x^(p-1)-x^(p-2)y+…+y^(p-1)}のみを考える。
z^p=A、1=B、(x+y)=C、{x^(p-1)-x^(p-2)y+…+y^(p-1)}=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1={x^(p-1)-x^(p-2)y+…+y^(p-1)}とz^p=(x+y)を共に満たす有理数は、(x,y)=(0,1)、(x,y)=(1,0)のみである。
省1
902: 日高 2020/01/15(水)11:48 ID:16OwUp8O(2/27) AAS
【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
【証明】p=2なので、z^2-y^2=(z+y)(z-y)と変形できる。
x^2=x^2×1=(x^2/a)×aなので、x^2=z^2-y^2とx^2×1=z^2-y^2と(x^2/a)×a=z^2-y^2のx,y,zの比は等しい。
したがって、x^2×1=(z+y)(z-y)のみを考える。
x^2=A、1=B、(z+y)=C、(z-y)=Dとおく。
AB=CDならば、B=Dのとき、A=Cとなる。
1=(z-y)のとき、x^2=(z+y)となるので、x^2=2y+1となる。
x^2=2y+1のxに任意の有理数を代入すると、yは、有理数となる。
∴p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
上下前次1-新書関写板覧索設栞歴
あと 100 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s