Inter-universal geometry と ABC予想 (応援スレ) 73 (946レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
865
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 08/20(水)16:34 ID:n7uBTsIt(4/5)
>>681
>整列可能定理の証明の方法で可算集合Xの整列順序を作るには選択関数f:2^X-{}→Xが必要。且つ|2^X-{}|は非可算。よって可算選択公理は役に立たない。
>一方で全単射g:N→Xが存在するからg(0)<g(1)<・・・で整列順序<を定義可能。(よって整列可能定理の証明の方法を取る必要が無い。よっていかなるタイプの選択公理も不要。)

中高一貫生も来る可能性があるので、赤ペン先生をしておく
まず
(参考)>>671-672より再録
1)下記 可算選択公理 Axiom of countable choice ACω は
 ”Application of ACω yields a sequence (Bn) n∈N ”
 つまり ω長さの sequence (Bn) n∈N を作る能力がある
2)一方 Axiom of dependent choice DC は 下記
 ”The axiom of dependent choice implies the axiom of countable choice and is strictly stronger.[4][5]
 It is possible to generalize the axiom to produce transfinite sequences.
 If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.”
3)要するに、DC は ACωより強力で ωを超えて ”produce transfinite sequences”だ
 また ”If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.”
 ってこと。つまりは、種々の選択公理の能力は、生成できる列長さで 測ることができる■
https://en.wikipedia.org/wiki/Axiom_of_countable_choice
Axiom of countable choice
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function.
Applications
ACω is particularly useful for the development of mathematical analysis, where many results depend on having a choice function for a countable collection of sets of real numbers.
Example: infinite implies Dedekind-infinite
As an example of an application of ACω, here is a proof (from ZF + ACω) that every infinite set is Dedekind-infinite:
Let X be infinite. For each natural number n, let An be the set of all n-tuples of distinct elements of X.
Since X is infinite, each An is non-empty.
Application of ACω yields a sequence (Bn) n∈N where each Bn is an n-tuple.
One can then concatenate these tuples into a single sequence (bn)n∈N of elements of X, possibly with repeating elements.
Weaker systems
Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice. However, some countably infinite sets of non-empty sets can be proven to have a choice function in ZF without any form of the axiom of choice.
For example, Vω∖{∅} has a choice function, where Vω is the set of hereditarily finite sets, i.e. the first set in the Von Neumann universe of non-finite rank.
The choice function is (trivially) the least element in the well-ordering.
つづく
872
(1): 132人目の素数さん [] 08/20(水)17:23 ID:FFMsJxNV(15/16)
>>865
>1)下記 可算選択公理 Axiom of countable choice ACω は
> ”Application of ACω yields a sequence (Bn) n∈N ”
> つまり ω長さの sequence (Bn) n∈N を作る能力がある
はい、大間違いです。
ACωを使えば可算族Anから代表系を取れると言っている。
君、数学だけじゃなく英語も全然ダメだね。

>冒頭のオチコボレさんの妄言は、無意味■
数学も英語も全然ダメな君の妄言こそ無意味
882: 132人目の素数さん [] 08/21(木)00:32 ID:LISQrQEJ(2/14)
>>865
>ACωはω長さのsequenceを作る能力がある
まったくのデタラメ
数学も英語もダメダメなオチコボレが勝手読みして妄想してるだけ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s