Inter-universal geometry と ABC予想 (応援スレ) 73 (734レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
421(1): 132人目の素数さん [] 08/09(土)11:27 ID:bw4CRSHc(2/6)
>>420
IUT、宇宙(下記)
https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99_(%E6%95%B0%E5%AD%A6)
宇宙 (数学)
物事を単純に保つために、自然数の集合 N は所与として SN を形成し、N 上の上部構造をとってもよい。これはしばしば通常の数学の宇宙であると考えられる。通常研究される数学のすべてはこの宇宙の要素を参照していると考えるということである。例えば、普通の実数の構成(デデキントの切断)はどれも SN に属している。超準解析も自然数の超準モデル上の上部構造において行うことができる。
集合論
SNは通常の数学の宇宙であるという主張に正確な意味を与えることは可能である。すなわち、それはツェルメロ集合論のモデルである。
ツェルメロ集合論は公理的集合論および数学基礎論、特にモデル理論における他の研究のさらなる発展にとって不十分であった。劇的な例として、上述の上部構造プロセスの記述はツェルメロ集合論においてそれ自身実行できないことが挙げられる。最終ステップとして、無限和 (infinitary union) としてのSを形成するための置換公理が必要である。置換公理は、ツェルメロ=フレンケル集合論を形成するように1922年にツェルメロ集合論に付加された。この公理集合は今日最も広く受け入れられている。そのため、通常の数学がSNにおいてなされるのに対し、SNの議論は"通常の"数学を越えてメタ数学の領域となる。
クルト・ゲーデルの構成可能集合 L と構成可能公理
到達不能基数は ZF のモデルと加法性公理を生じ、さらにグロタンディーク宇宙の集合の存在と等価である。
圏論
圏論に歴史的につながる宇宙への別のアプローチの方法がある。これはグロタンディーク宇宙と呼ばれる。大まかに言えば、グロタンディーク宇宙とは集合論の通常実行されるすべての操作を内部にもつ集合である
グロタンディーク宇宙において作業している場合、数学者はしばしば宇宙の公理を仮定する。"任意の集合 x に対し、x ∈U となるような宇宙 U が存在する。" この公理の重要な点は、任意の集合がいくつかの U に対して U-small が検討できることである。つまり一般的なグロタンディーク宇宙に内部で、任意の独立変数が適用されるということである。この公理は強到達不能基数の存在と密接に関係している。
423(1): 132人目の素数さん [] 08/09(土)11:43 ID:bw4CRSHc(3/6)
>>421
IUT、宇宙(下記)
上記の圏論の宇宙 グロタンディーク宇宙が考えられた時期と平行して
強制法が考えられた
『直観的には、強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大することから成り立っている』(下記)
そして、21世紀のいま、基礎論屋さんは
宇宙といえば、下記強制法の宇宙を連想する
そういう人に教えられた学生も同様だろう
”宇宙と宇宙をつなぐ”???
なんじゃらほい ???
となるのですw ;p)
ここらは、望月さんには理解できないだろうね
グロタンディーク宇宙に関連する 用語「宇宙」しか頭になさそうだ
おそらく 加藤さんもね
ここらが、世間に無用の混乱のもとだった
”宇宙と宇宙をつなぐ”が、引き起こす無用の混乱
だが、それも 初期のわらい話で
もうその時期は過ぎただろう
https://ja.wikipedia.org/wiki/%E5%BC%B7%E5%88%B6%E6%B3%95
強制法
強制法が初めて使われたのは1962年、連続体仮説と選択公理のZFからの独立性を証明した時のことである。強制法は60年代に大きく再構成されシンプルになり、集合論や、再帰理論などの数理論理学の分野で、極めて強力な手法として使われてきた。
直観的意味合い
直観的には、強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大することから成り立っている。 この大きい宇宙では、拡大する前の宇宙には無かった ω = {0,1,2,…} の新しい部分集合をたくさん要素に持っている。 そしてそれにより連続体仮説を否定することができる。が、このような議論は表面上不可能である。
原理的には、次のようなものを考える。
略
強制法はこのアイデアを洗練したもので、新しい集合の存在を認めて利用するというより、拡大された宇宙の性質を元の宇宙からよりよく操作することを許したものである。
コーエンの元々のテクニックは今ではramified forcing(英語版)と呼ばれるもので、強制法の説明によく使われるunramified forcingとは少々異なる。
可算推移モデルとジェネリックフィルター
強制法の鍵となるステップはZFCの宇宙 V に対して、V の要素でない適切な G を見つけることである。 結果としては G によるP-名前の解釈全てによるクラスが元々の V の拡大になるZFCのモデルになるようにする。
略
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s