Inter-universal geometry と ABC予想 (応援スレ) 73 (765レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
418(1): 132人目の素数さん [] 08/08(金)19:49 ID:xYBDaQvH(3/3)
∩X={x∈∪X|∀y∈X(x∈y)}
たったこれだけが分からないんじゃ落ちこぼれるのも当たり前
オチコボレは数学板で語るなよ
420(1): 132人目の素数さん [] 08/09(土)11:19 ID:bw4CRSHc(1/6)
>>418
IUT、宇宙(下記)
https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99_(%E6%95%B0%E5%AD%A6)
宇宙 (数学)
数理論理学において、構造 (もしくはモデル) の宇宙(英: Universe)とは議論領域のことである。
数学、とりわけ集合論や数学基礎論における宇宙とは、特定の状況において考察される実体のすべてを元として含むような類のことである。このアイデアにはいくつものバージョンがあるため、項目を分けて説明する。
ある特定の文脈において
おそらく最も単純なバージョンは、研究対象が特定の集合で閉じている限り、任意の集合が宇宙であるというものである。 もし研究対象が実数として形式化されていれば、実数の集合である実数直線 R は考察下において宇宙になりうる。 これは1870年代から1880年代にかけてゲオルク・カントールが実解析の応用として、初の現代的な集合論と濃度の開発に用いた宇宙である。 カントールが当時興味を持っていた集合は、R の部分集合だった。
この宇宙の概念はベン図の使用に反映されている。 ベン図において、作用は伝統的に宇宙 U を表す大きな四角形の内部に生じる。 一般的に集合が U の部分集合であれば、それは円によって表現される。集合 A の補集合は A の円の外側の四角形の部分によって与えられている。
通常の数学
主要な関心が X であっても、 X よりもかなり大きな宇宙が必要とされることになる。 上記のアイデアに続いて、X の宇宙としての 上部構造 が要請される。 これは次のような再帰的構造によって定義される。
略
集合 X の開始地点がどこであろうと、空集合 {} は S1X に属することに注意すること。空集合はフォン・ノイマン順序数 [0] である。さらに元が空集合のみの集合 {[0]} は、S2X に属する。これはフォン・ノイマン順序数 [1] である。同様に、{[1]} は S3X に属し、さらに {[0]} と {[1]} の和集合 {[0], [1]} も属するため、これはフォン・ノイマン順序数 [2] となる。このプロセスを続けていけば、すべての 自然数 はフォン・ノイマン順序数による上部構造の内部において表現される。
もし開始地点がちょうど X = {} ならば、数学で必要となる多くの集合は {} 上の上部構造の要素として現れる。しかし、S{} の要素のそれぞれは有限集合であろう! 自然数のひとつひとつはそれに属すが、すべての自然数の集合 N は属さない(それは S{} の部分集合であるにもかかわらず)。実際、X 上の上部構造はすべての遺伝的有限集合から成る。このように、それは有限主義者の数学の宇宙と考えられる。時代をさかのぼれば、19世紀の有限主義者レオポルト・クロネッカーはこの宇宙において仕事をしたことが思い出される。彼は、それぞれの自然数は存在するが、集合 N(完全な無限)は存在しないと信じていた。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s