Inter-universal geometry と ABC予想 (応援スレ) 73 (694レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
119(1): 132人目の素数さん [] 07/31(木)20:45 ID:1CxagZxr(10/17)
>>111
>一方 漫然と べき集合公理無しで x⊂a で 集合族を作った時
君、大きな勘違いしてるよ。
{x⊂a|x=x}はaの部分集合全体の集合だから、P(a)と書かれてなくとも当然P(a)を使ってる。
P(a)と書かれてないからP(a)を使ってないという考えが浅はか。
だから「表記の違いだけ」って言ってるんだけど言葉が通じない? 言語障害? 病院行きなよ
157(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 07/31(木)23:51 ID:ZOjwMpAx(6/6)
>>119
>{x⊂a|x=x}はaの部分集合全体の集合だから、P(a)と書かれてなくとも当然P(a)を使ってる。
>P(a)と書かれてないからP(a)を使ってないという考えが浅はか。
詭弁だな >>104より
1)の ωa = ∩a^、 a^ = {x ∈P(a) | M(x)}、P(a) は a の「冪集合」、「x は無限集合である」という命題を M(x)
2)の N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}、Aは無限公理により存在する集合を任意に選んだ
この二つの式で 前者1)の a^ = {x ∈P(a) | M(x)} は、冪集合 P(a)の殆ど全てを渡る集合族である
∵ aは無限公理の一つの無限集合を選んだもので、P(a)は 非可算濃度以上で M(x)=「x は無限集合である」だから
(つまり、 P(a)から 有限集合を除いた 集合族が a^ = {x ∈P(a) | M(x)} (つまり P(a)の無限集合の部分))
一方、後者2)の {x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}は、冪集合公理 P(A) を使っていない(使うと言ってない)
だから、Aが無限公理の一つの無限集合を選んだものとして、Aが可算の場合に
集合族 {x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}は、非可算の集合族にはできません!
冪集合公理 P(A) を使わない限り、非可算の集合族にはできません!!www
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s