大学数学の質問スレ Part1 (282レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
6
(3): 132人目の素数さん [] 05/26(月)14:17 ID:1P739T/v(1/8)
以下、あっていますよね?

Σ a_n, Σ b_n は絶対収束するとする。
c_n := a_0 * b_n + a_1 * b_{n-1} + … + a_n * b_0 とする。

Σ c_n は絶対収束し、 Σ c_n = Σ a_n * Σ b_n が成り立つことを証明せよ。

証明:
A_n := Σ_{k=0}^n a_k
B_n := Σ_{l=0}^n b_l
C_n := Σ_{m=0}^n c_m
A'_n := Σ_{k=0}^n |a_k|
B'_n := Σ_{l=0}^n |b_l|
C'_n := Σ_{m=0}^n |c_m|
lim_{n→∞} A_n = A
lim_{n→∞} B_n = B
lim_{n→∞} A'_n = A'
lim_{n→∞} B'_n = B'
とする。

コーシーの収束条件より、
任意の正の実数 ε に対して、 n ≧ N ならば、ε > A'_n * B'_n - A'_N * B'_N であるような N が存在する。
n ≧ N ならば、 ε > A'_n * B'_n - A'_N * B'_N ≧ A'_n * B'_n - C'_n ≧ |A_n * B_n - C_n|

つまり、 lim_{n→∞} (A'_n * B'_n - C'_n) = 0
よって、 lim_{n→∞} (C'_n - A' * B') = lim_{n→∞} [(C'_n - A'_n * B'_n) + (A'_n * B'_n - A' * B')] = lim_{n→∞} (C'_n - A'_n * B'_n) + lim_{n→∞} (A'_n * B'_n - A' * B') = 0 + 0 = 0
したがって、 lim_{n→∞} C'_n = A' * B'
よって、 Σ c_n は絶対収束する。

つまり、 lim_{n→∞} (A_n * B_n - C_n) = 0
よって、 lim_{n→∞} (C_n - A * B) = lim_{n→∞} [(C_n - A_n * B_n) + (A_n * B_n - A * B)] = lim_{n→∞} (C_n - A_n * B_n) + lim_{n→∞} (A_n * B_n - A * B) = 0 + 0 = 0
したがって、 lim_{n→∞} C_n = A * B
よって、 Σ c_n = Σ a_n * Σ b_n が成り立つ。
8: 132人目の素数さん [] 05/26(月)14:21 ID:1P739T/v(2/8)
>>6

AI(GhatGPT, Grok, Gemini)に質問しましたが、どれも間違っているという回答でした。
あっていると思いますが、もし間違っていたら、指摘してください。
12: 132人目の素数さん [] 05/26(月)14:44 ID:1P739T/v(5/8)
ちなみに

>>6

の問題は、

堀川穎二著『複素関数論の要諦』

の宿題3に関連する問題です。
13: 132人目の素数さん [] 05/26(月)14:50 ID:1P739T/v(6/8)
>>6

は有名なので、微分積分の教科書(例えば、松坂和夫著『解析入門』)に書いてあるのですが、

>>6

の証明とは違う証明になっています。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.013s