大学数学の質問スレ Part1 (282レス)
上下前次1-新
抽出解除 レス栞
6(3): 132人目の素数さん [] 05/26(月)14:17:00.15 ID:1P739T/v(1/8)
以下、あっていますよね?
Σ a_n, Σ b_n は絶対収束するとする。
c_n := a_0 * b_n + a_1 * b_{n-1} + … + a_n * b_0 とする。
Σ c_n は絶対収束し、 Σ c_n = Σ a_n * Σ b_n が成り立つことを証明せよ。
証明:
A_n := Σ_{k=0}^n a_k
B_n := Σ_{l=0}^n b_l
C_n := Σ_{m=0}^n c_m
A'_n := Σ_{k=0}^n |a_k|
B'_n := Σ_{l=0}^n |b_l|
C'_n := Σ_{m=0}^n |c_m|
lim_{n→∞} A_n = A
lim_{n→∞} B_n = B
lim_{n→∞} A'_n = A'
lim_{n→∞} B'_n = B'
とする。
コーシーの収束条件より、
任意の正の実数 ε に対して、 n ≧ N ならば、ε > A'_n * B'_n - A'_N * B'_N であるような N が存在する。
n ≧ N ならば、 ε > A'_n * B'_n - A'_N * B'_N ≧ A'_n * B'_n - C'_n ≧ |A_n * B_n - C_n|
つまり、 lim_{n→∞} (A'_n * B'_n - C'_n) = 0
よって、 lim_{n→∞} (C'_n - A' * B') = lim_{n→∞} [(C'_n - A'_n * B'_n) + (A'_n * B'_n - A' * B')] = lim_{n→∞} (C'_n - A'_n * B'_n) + lim_{n→∞} (A'_n * B'_n - A' * B') = 0 + 0 = 0
したがって、 lim_{n→∞} C'_n = A' * B'
よって、 Σ c_n は絶対収束する。
つまり、 lim_{n→∞} (A_n * B_n - C_n) = 0
よって、 lim_{n→∞} (C_n - A * B) = lim_{n→∞} [(C_n - A_n * B_n) + (A_n * B_n - A * B)] = lim_{n→∞} (C_n - A_n * B_n) + lim_{n→∞} (A_n * B_n - A * B) = 0 + 0 = 0
したがって、 lim_{n→∞} C_n = A * B
よって、 Σ c_n = Σ a_n * Σ b_n が成り立つ。
256: ボクチン仔犬だよ [] 08/09(土)19:56:25.15 ID:vFZthYMk(2/3)
https://youtu.be/-0miT5VI3EI?si=g5pjxuIRm_5arUlk
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.008s