面白い数学の問題おしえて~な 44問目 (226レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
212
(1): 132人目の素数さん [sage] 08/13(水)04:03 ID:v773YyBJ(1/5)
a₁ < 2 の場合は初項を a₁/(a₁-1) にとりかえれば第3項以降は同じになるので a₁ ≧ 2 と仮定してよい。Sₙ = Σₖ₌₁ⁿaₖ、Pₙ = Πₖ₌₁ⁿaₖ とする。aₙ₊₁ = Sₙ/(Pₙ-1) が成立する。
213: 132人目の素数さん [sage] 08/13(水)04:03 ID:v773YyBJ(2/5)
補題 Sₙ = Pₙ
(∵) n=1 では明らかに成立する。n=m で成立すると仮定する。aₘ₊₁ = Sₘ/(Pₘ-1) = Sₘ/(Sₘ-1) であるから Sₘ₊₁ = aₘ₊₁ + Sₘ = Sₘ/(Sₘ-1) + Sₘ = Sₘ²/(Sₘ-1)、Pₘ₊₁ = aₘ₊₁Sₘ = Sₘ/(Sₘ-1)Sₘ = Sₘ²/(Sₘ-1) により n=m+1 でも成立する。□
214: 132人目の素数さん [sage] 08/13(水)04:03 ID:v773YyBJ(3/5)
補題 n+1 ≦ Sₙ ≦ a₁ + n + log(n)
(∵)
Sₙ₊₁ = Sₙ + 1 + 1/Sₙ + 1/Sₙ² + ...
≦ Sₙ + 1 + 1/(n+1) + 1/(n+1)² + ..
= Sₙ + 1 + 1/n
≦ a + n +1 + log(n) + 1/n
≦ a + n +1 + log(n+1)
Sₙ₊₁ = Sₙ + 1 + 1/Sₙ + 1/Sₙ² + ...
≧ n+2

215: 132人目の素数さん [sage] 08/13(水)04:04 ID:v773YyBJ(4/5)
1/(aₙ-1) = 1/( Sₙ₋₁/(Sₙ₋₁-1) - 1 ) = Sₙ₋₁-1 (∀n≧2 )
216: 132人目の素数さん [sage] 08/13(水)04:04 ID:v773YyBJ(5/5)
Σₖ₌₁ⁿ1/(aₖ-1) = 1/2n(n+1) + o(n²)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.014s