[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
890
(2): 132人目の素数さん [] 2023/04/04(火)10:34 ID:tCJGQSNR(2/6)
>>888
>両者が同値というのは
>階数・退化次数の定理
>から導ける

一応フォローしておきますね(下記)

さて
>Aは零因子でない

行列の成分を、実数ないし複素数として
零因子の話は、nxnの正方行列が環を成すことを学べば、すぐに登場する話で
行列Aすべてが積の逆元を持つように、正則行列の集合を考えれば(非可換)体になるけれど
逆元を持たない場合も含めて考えれば、一般的環を成す
このとき
逆元を持たない非正則行列
 ↓↑
零因子の行列
という同値関係は、当然知っておくべきと思うよ

(参考)
https://ja.wikipedia.org/wiki/%E9%9A%8E%E6%95%B0%E3%83%BB%E9%80%80%E5%8C%96%E6%AC%A1%E6%95%B0%E3%81%AE%E5%AE%9A%E7%90%86
階数・退化次数の定理
数学の線型代数学の分野における階数・退化次数の定理(かいすう・たいかじすうのていり、英: rank?nullity theorem)とは、最も簡単な場合、ある行列の階数(rank)と退化次数(nullity)の和は、その行列の列の数に等しいということを述べた定理である。次元定理[1]とも呼ばれる。

証明
ここでは二つの証明を与える。初めの証明では、線型変換のための記号を用いるが、T(x) = Ax と書くことによって簡単に行列の場合にも適用できる(ここで A はある m × n 行列)。二つ目の証明では、階数が r のある m × n 行列 A に関する同次系について考え、A の零空間を張る n ? r 個の線型独立な解が存在することを陽的に示す。

第一の証明

913
(4): 132人目の素数さん [] 2023/04/05(水)12:01 ID:joMjBMfa(1/5)
>>911
ありがとう

> 900の「正則行列の集合は体にならない.」など。

下記の雪江 用語の問題ですね
(用語の問題を整理することは意味があると思うので、調べて書いておきます)
1)まずこの話は、>>890 「行列Aすべてが積の逆元を持つように、正則行列の集合を考えれば(非可換)体になるけれど」から始まっている
 そして、>>895「こういう文章は書いてはいけないと 数学科では指導される」だった
 確かに、雑な文章ではある
 二つ問題があると思う。
 i)零行列は逆元を持たないのに除外していない
 ii)"(非可換)体"という用語が適切か
2)下記の雪江 用語の問題では、「可除環」(Division ring)を使うという
3)ja.wikipedia 体 (数学) (ここに用語の一覧表があり参考になる)では、非可換を含む立場(上記”(非可換)体”に同じ)
4)そして、fr.wikipedia Corps (mathematiques) 仏語 も上記の体 (数学) と同じ立場(非可換を含むもあり)
5)一方、英(en.wikipedia) Field、独 Korper (Algebra)は、積のアーベル(abelian)を要求する立場ですね

纏めると、”零要素が逆元を持たない”は、数学科生は意識しておくべきはその通りです
用語”体”が、いま2023年の日本の数学科で、積のアーベルを要求するかどうか? 多分、下記雪江の通りと思います(米国の影響か)
しかし、下記仏Corps (mathematiques) みたいなのもあるということは(仏は米に服さないの気概?)、ちょっと知っておくのも良いと思います

つづく
916: 132人目の素数さん [sage] 2023/04/05(水)12:41 ID:doTWM65u(2/5)
>>913
>1)まずこの話は、>>890 「行列Aすべてが積の逆元を持つように、正則行列の集合を考えれば(非可換)体になるけれど」から始まっている
> そして、>>895「こういう文章は書いてはいけないと 数学科では指導される」だった
> 確かに、雑な文章ではある
> 二つ問題があると思う。
> i)零行列は逆元を持たないのに除外していない
> ii)"(非可換)体"という用語が適切か
非可換体ではなく非可換環な
非可換環という言葉はよく使われる
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.029s