[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
770
(2): 132人目の素数さん [] 2023/03/26(日)13:11 ID:P7rbLzdx(5/12)
>>768
余談ですが
勉強の比重は、およそ本業系5、数学2、物理1、コンピュータ1 計10
数学2、物理1は、本業系の文献を読む基礎としてでもあります
コンピュータ1は、実務で使いますから

なので、数学2だから、数学科の人と同じだけの時間は割けないわけで
穴はあるだろうし、理解が浅いところがあるだろう

大体は、微分方程式系の勉強です
佐藤超関数(主に一変数)も、かじった

偏微分方程式の勉強は勿論だが、偏微分方程式は数値解法が発展して
コンピュータ技術の進歩とともに、どんどん解けるようになった
(有限要素法とかね。このベースに、線形代数がある)

ガロア理論は、余技です
なお、Navies-Stokes方程式 が、クレイ数学研究所 ミレニアム懸賞問題になったのは
気象予報とかに直結するからでしょうね
真鍋さんのノーベル賞関連の問題ですね https://ja.wikipedia.org/wiki/%E7%9C%9E%E9%8D%8B%E6%B7%91%E9%83%8E

https://manabitimes.jp/math/993
高校数学の美しい物語
ミレニアム懸賞問題の概要と大雑把な説明 2021/04/04
・ナビエ?ストークス方程式
流体力学の基本方程式であるナビエ?ストークス方程式という複雑な微分方程式が「それなりに性質のよい解」を持つかどうか判定せよという問題です。ナビエ?ストークス方程式をきちんと理解するのは難しいですが,雰囲気だけなら!
ちなみに,実際の流体力学でナビエ?ストークス方程式を使うときには方程式を単純化してからシミュレーションを行うことが多いです。 →ナビエ-ストークス方程式の導出
771: 132人目の素数さん [] 2023/03/26(日)14:27 ID:P7rbLzdx(6/12)
>>770 訂正

勉強の比重は、およそ本業系5、数学2、物理1、コンピュータ1 計10
 ↓
勉強の比重は、およそ本業系6、数学2、物理1、コンピュータ1 計10

計10になってなかった(苦笑)
本業系には、自分の専門以外の雑学(含む法律、語学)も入ります
数学は、物理や本業で出てくるので、ここをしっかりしておくのが吉です
物理も類似で、物理が分からないと、本業の論文が読めません
777: 132人目の素数さん [sage] 2023/03/26(日)18:06 ID:ugAJTfFu(7/8)
>>770
> 余談ですが
> 勉強の比重は、およそ本業系6、数学2、物理1、コンピュータ1 計10
> 数学2、物理1は、本業系の文献を読む基礎としてでもあります
> コンピュータ1は、実務で使いますから

物理2、数学1にしたほうがいいですね

あなたが理解できる数学なら
掛ける時間はその程度でよいかと

> 大体は、微分方程式系の勉強です
> 佐藤超関数(主に一変数)も、かじった

だったらやっぱり1でいいです

> ガロア理論は、余技です

無駄なのでばっさり切りましょう
人生の時間は有限です
自分に向いてないことをやっても意味ありません
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s