[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
667(1): 132人目の素数さん [] 2023/03/22(水)16:10 ID:VqclUbtx(3/6)
>>666 被った、貼り直し
>>665
つづき
In the case of one complex variable, the Riemann
mapping theorem says that any simply connected
domain is either C or equivalent to the unit disc. In
contrast, Henri Poincare [17] showed that in higher
dimensions even the ball and the bidisc are not
equivalent, which implies that their boundaries
cannot be equivalent.
In the same article Poincare posed the local
equivalence problem, i.e., to decide when two hypersurfaces are equivalent in the neighbourhoods
of given points. He sketched a heuristic argument
that any two real hypersurfaces in C2 cannot be
expected to be locally equivalent.
In order to solve this equivalence problem
for real hypersurfaces in C2, Elie Cartan [6], [7]
constructed in 1932 a “hyperspherical connection” by applying his method of moving frames.
The technique of Cartan has been further developed by introducing modern geometric and
algebraic tools, mainly in the groundbreaking
work by Noboru Tanaka (see [22], [23], [24]).
These powerful and elegant methods are widely
used in conformal geometry and have led to the
development of parabolic geometry (see [5]), while
Cartan’s original approach, applied to hypersurfaces in higher dimensional complex space by
Shiing-Shen Chern and Jurgen Moser [8], is still
dominant in complex analysis (see, e.g., [12], [13]).
つづく
668(1): 132人目の素数さん [] 2023/03/22(水)16:10 ID:VqclUbtx(4/6)
>>667
つづき
In order to solve this equivalence problem
for real hypersurfaces in C2
, Elie Cartan [6], [7]
constructed in 1932 a “hyperspherical connection” by applying his method of moving frames.
The technique of Cartan has been further developed by introducing modern geometric and
algebraic tools, mainly in the groundbreaking
work by Noboru Tanaka (see [22], [23], [24]).
These powerful and elegant methods are widely
used in conformal geometry and have led to the
development of parabolic geometry (see [5]), while
Cartan’s original approach, applied to hypersurfaces in higher dimensional complex space by
Shiing-Shen Chern and Jurgen Moser [8], is still
dominant in complex analysis (see, e.g., [12], [13]).
Finally, according to Tanaka’s results, the choice
of the Cartan connection is controlled by the
∂-exact components of the curvature.
P24
Levi-Tanaka Algebra and Tanaka’s Prolongation Procedure
略
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s