[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
65(1): 132人目の素数さん [] 2023/03/06(月)21:51 ID:L0rpcIqG(4/5)
>>59
>Tannenbaum, Allen Harvard University 1976 32
この人は、知っている・・というか、制御関係では、そうとう有名ですね”H-infinity type control problem”H∞制御 ね
H∞制御は、数学屋さんは知らないかもだが・・ (:p
あのTannenbaumさんだったか・・
https://en.wikipedia.org/wiki/Allen_Tannenbaum
Allen Robert Tannenbaum (born January 25, 1953) is an American/Israeli applied mathematician and presently Distinguished Professor of Computer Science and Applied Mathematics & Statistics at the State University of New York at Stony Brook.
Tannenbaum has done research in numerous areas including robust control, computer vision, and biomedical imaging, having almost 500 publications. He pioneered the field of robust control with the solution of the gain margin and phase margin problems using techniques from Nevanlinna?Pick interpolation theory, which was the first H-infinity type control problem solved.
https://ja.wikipedia.org/wiki/H%E2%88%9E%E5%88%B6%E5%BE%A1%E7%90%86%E8%AB%96
H∞制御理論
H∞制御理論(エイチインフィニティせいぎょりろん、英語:H-infinity control theory)は、外乱信号の影響を抑制する制御系を構築するための制御理論である。この制御理論は、1980年代に研究が進み、1989年頃に完成した。
H∞ノルムと呼ばれるノルムによって伝達関数を評価し、それが所望の値より小さくなるようにすることにより、目的の性能を達成させる。
それまでの現代制御論はモデルが正確であることを前提としていたため、モデル化誤差のあるシステムに対して性能を保証しなかったが、H∞制御はロバスト性により多少いいかげんな同定でも許されるようになったこと、周波数領域での設計ができるようになったために古典制御に慣れた技術者が容易に設計できることなどから、産業界で積極的に採り入れられ、理論と現場の距離を縮めたと言われている。
67(1): 132人目の素数さん [] 2023/03/06(月)22:59 ID:Drk4f80h(9/9)
>>65
1967年の複素解析の研究が2014年の工学の論文で役に立っている↓
安定なコントローラの設計問題は Youla et al. による
parity interlacing property の発見を中心に,1970 年代よ
り活発に研究されてきた.そして1980年代に,Nevanlinna-Pick 補間理論による
安定なロバストコントローラの研究も
なされてきた.そのアプローチは,まずコントローラの安定性を考慮し,
つぎに H∞ 制約を達成するというものである.
本論文では,基本的な多目的 H∞ 制御問題である混合
感度低減化を考え,それをむだ時間系に対して達成する安
定なコントローラを設計した.
安定化においてむだ時間系が集中定数系と大きく異なる
点は,無限個の極や真性特異点を相殺する必要がある点で
ある.この無限次元性に対処するために,本研究では古典
的な f(zk) = wk という補間ではなく,Sarason によって
提案された作用素論的な補間を用いた.
D. Youla, J. Bongiorno, and C. Lu: Single-loop feedback
stabilization of linear multivariable dynamical plants, Automatica,
10, 159/173 (1974).
D. Sarason: Generalized interpolation in H∞, Trans. American Math. Society,
127, 179/203 (1967)
M. Wakaiki and Y. Yamamoto: Stable controller design for
mixed sensitivity reduction of infinite-dimensional systems,
Systems Control Lett., 72, 80/85 (2014)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s