[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
269
(4): 132人目の素数さん [] 2023/03/10(金)11:29 ID:YXTEQX3G(1/4)
>>266
>>ただ君が多変数関数論を理解しきった体で
>>書き散らかすのは不健全だからやめとけと
>>いつてるまで

↓もしかしてこのレスのこと?

1) φを多重劣調和関数としたとき
|f|^2e^{-φ}が可積分であるような解析函数芽fの集合は
連接イデアル層になる(Nadelの定理)
これをφの乗数イデアル層といいI(φ)で表す。
Fano多様体上のK"ahler-Einstein計量の存在問題に現れる
Monge-Amp`ere方程式の解析において
I(φ)を係数とするコホモロジー群の消滅が決定的に重要な
役割を果たした。
2)小平消滅定理をアンプル(豊富)束係数のコホモロジー消滅と見ると
代数的証明が可能である(Deligne-Illusie)ので、乗数イデアル層も
同様な代数化が期待できる。I(φ)=I(pφ)を満たすpの上限は>1であろう
というのがDemaillyのSOC(strong openness conjecture)であったが
JohnssonとMustataはこれを代数的な定式化により二次元で解いた。
Valuations and asymptotic invariants for sequences
of ideals Ann. Inst. Fourier (2012)
そのあと一般次元でGuanとZhouが解析的方法で解いた。
A proof of Demailly's strong openness conjecture
Ann. of Math. (2015)
XuはJ-M方式を完遂した。
Xu : A minimizing valuation is quasi-monomial, Ann. of Math. (2020)
3) 乗数イデアル層は整閉な連接イデアル層だが逆は正しくないので、
乗数イデアル層の代数的な特徴づけは非常に興味ある課題である。
270
(1): 132人目の素数さん [sage] 2023/03/10(金)11:56 ID:mCwkYGqk(38/41)
>>267
さよか ならけっこう
>>269
乙がこんな文章書けるなら褒めてあげるよ
311
(1): 132人目の素数さん [] 2023/03/11(土)10:29 ID:8g4xRswg(9/10)
>>307
>>実は上のレスは5月が締め切りの
>>長めのレビューのような論文の
>>下書きの意味もあります。
>あんた、誰?

東大数学科で、次期日銀総裁の植田氏とゼミで一緒だったという人でしょ
肥田晴三氏の活躍を見て、数論を諦めたとかあったし
解析くわしいし、ご専門はその”長めのレビューのような論文”>>269>>11)関連なのでしょう

世の中、数学を作る人がいて、数学を使う人がいる
全員が数学者になったら困るでしょ? 物理屋も必要だし、医者も必要だし
次期日銀総裁の植田氏のように、経済学者になった人もいるそうだが、経済学者もありなんじゃない?

あんたみたいな数学科で落ちこぼれて35年の人も必要かもねwwwww 2chスレ:math
おっと、3月年度末で忙しいから
ペース落とすよ、悪しからず
478
(1): 132人目の素数さん [] 2023/03/18(土)08:49 ID:M09HE8oG(1/24)
>>475
>「東大数学科出身で」というのは妄想だが
>「数学のプロ研究者で」と「大学で数学を教えていた」はおおむね正しい

ありがとうございます
ぶしつけな質問で恐縮だが
・あなたは、下記の東大の一年生向けのセミナーで 『空間・時間・物質』(Raum, Zeit, Materie)の原書講読をやった人と同一人物ですか?
・あなたは、>>269で乗数イデアルについて、引用した人と同一人物ですか?
如何でしょうか?

(参考)前スレより
ガロア第一論文及びその関連の資料スレ
2chスレ:math
653 名前:132人目の素数さん[] 投稿日:2023/02/19(日) 20:44:45.12 ID:wMMN+4ky [5/5]
彼は一般相対性理論の発展を追った著書『空間・時間・物質』(Raum, Zeit, Materie) を1918年に発表したが、これは広く読まれ、1922年には第4版が出版された。

東大の一年生向けのセミナーの教材がこれだったが
いきなり原書講読だったのでたまげた。
483
(2): 132人目の素数さん [sage] 2023/03/18(土)09:33 ID:QmDuSyxi(1/2)
>>269
乗数イデアルでググったが、>>269の内容は多変数関数論ではなく複素幾何学になるとは思う

>>442
Kowalskyは局所コンパクトかつ離散的でない位相体が同型になり得る位相体の構造を
初等的な手法で浮き彫りにした人物で、Kowalskyが示した結果の証明には11、12ページを要する
Kowalskyの結果とフロベニウスの定理により、
任意の局所コンパクトな位相体は実数体か複素数体か四元数体のどれか1つに同型であることが示された
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s