[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
202
(2): 132人目の素数さん [] 2023/03/10(金)08:24 ID:14LHUOWE(3/7)
>>201
磁場項を含むシュレディンガー方程式は
複素モンジュ・アンペール方程式の解析に
新しい道を開きました。
Demaillyが「これが私の最も良い仕事だ」
と言っていた複素モース不等式の理論です。
204: 132人目の素数さん [sage] 2023/03/10(金)08:45 ID:WDvXIOZ/(6/35)
>>202
複素モース不等式は分からんが、
物理由来の分散型方程式の実解析や調和解析が主体の解析から
新しい解析につながったのはよかったね
272
(3): 132人目の素数さん [] 2023/03/10(金)12:01 ID:ghglJniN(2/7)
>>202
>磁場項を含むシュレディンガー方程式は
>複素モンジュ・アンペール方程式の解析に
>新しい道を開きました。

ありがとう
和文検索では、ジャストの文献ヒットしないけど
取りあえずヒットしたメモをば貼ります

https://www.ms.u-tokyo.ac.jp/seminar/colloquium/past_2.html
談話会・数理科学講演会
過去の記録
2019年06月28日(金)
15:30-16:30 数理科学研究科棟(駒場) 056号室
木田良才 氏 (東京大学数理科学研究科)
軌道同値関係への誘い
[ 講演概要 ]
測度空間への群作用に対し,作用の軌道を同値類とする同値関係が得られる.このような軌道同値関係の研究は,古くはフォンノイマン環の研究に動機付けられ,そのため,従順性を対象とするものが多かった.現在では,非従順な対象の研究も盛んである.例えば,非従順性と自由部分群の存在の関係を問うフォンノイマンの問題が,軌道同値関係の枠組みでは(群の場合と違って)肯定的に解決され,驚くべきことに,そのアイデアはパーコレーションの理論に基づいている(Gaboriau-Lyons).講演では,これらを概観した後,講演者が近年取り組んでいる内部従順性にまつわる研究を紹介したい.

2018年03月10日(土)
13:00-14:00 数理科学研究科棟(駒場) 大講義室号室
二木昭人 氏 (東大数理)
K安定性と幾何学的非線形問題 (JAPANESE)
[ 講演概要 ]
K安定性は代数幾何における幾何学的不変式論(GIT)の安定性として定式化されたものであるが,アイデアの端緒は Kazdan-Warner が見出したある非線形偏微分方程式の可解性の障害にある.この非線形問題は微分幾何学的に表現すると,2次元単位球面に滑らかな関数 k を任意に与えたとき,計量 g に適当な正の関数 f をかけて得られる計量 fg が k をガウス曲率になるように,f を決めることができるか,という問題である.これは Nirenberg の問題と呼ばれ,現時点でも完全な答えは得られていない.2次元球面を1次元複素射影空間とみなし,更に Fano 多様体の特別な場合とみなして,Fano 多様体の GIT 安定性として定式化したのは Gang Tian であり(1997),

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s