[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
169
(3): 132人目の素数さん [sage] 2023/03/09(木)15:38 ID:XiwThM8i(1/4)
>>166
>「微分のことは微分でせよ」
 令和の今、この話をしたり顔で語る奴は
「昭和の耄碌爺」と言われる

 なぜなら、この件は梅田亨が2004年1月〜3月の
数学セミナーの連載記事で、矢野健太郎の記憶違い
によるホラ話であることが明らかになったからである

ホラは以下の2点
1. ある定理(連続関数の原始関数の存在)を
 積分を用いずに証明したのは高木貞治ではない
 (実はシュミットだそうだ)
2. ダジャレをいつたのは高木だが
 実は彼の考えは全く逆であった

したがっていまだにヤノケンの誤解を真に受けて
そのまま繰り返す奴は他人の言葉をただ繰り返す
脳ミソがトリ並のオウム野郎と🐎🦌にされる
170: 132人目の素数さん [sage] 2023/03/09(木)15:40 ID:XiwThM8i(2/4)
>>169
ああ、いかんいかん
ド素人相手に志村五郎みたいなイケズ発言してもうた
173
(3): 132人目の素数さん [] 2023/03/09(木)18:28 ID:PjKcpDKf(3/4)
>>169
> なぜなら、この件は梅田亨が2004年1月~3月の
>数学セミナーの連載記事で、矢野健太郎の記憶違い
>によるホラ話であることが明らかになったからである
> ホラは以下の2点
> 1. ある定理(連続関数の原始関数の存在)を
> 積分を用いずに証明したのは高木貞治ではない
> (実はシュミットだそうだ)
> 2. ダジャレをいつたのは高木だが
> 実は彼の考えは全く逆であった

梅田亨さんね(下記)。彼は、いろんな連載をしているね
だが、梅田説が完全に正しいとは限らないと思うよ
(その記事読んでないのに反論して悪いけど)

1)2004年1月~3月とあるけど、どの月なの? ピンポイント指定しなよw
2)矢野健太郎の記憶違いがある可能性は否定できないが、かと言って矢野健太郎氏が荒唐無稽な根も葉もないことを書いたとするのは、如何か?
3)梅田亨氏が 「連続関数の原始関数の存在を、積分を用いずに証明した」説は、意味分からんし
 (下記のように、測度論と絡むし、リーマン積分から定義しないと、結局ダメなんじゃない?w
  下記の高知工科大学はそこは流しているけど、この程度の証明で済むなら、高木先生の出る幕ないぜw
  おサルさん、何か勘違いじゃね?)
 
https://ja.wikipedia.org/wiki/%E4%B8%8D%E5%AE%9A%E7%A9%8D%E5%88%86
不定積分
https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E7%A9%8D%E5%88%86%E5%AD%A6%E3%81%AE%E5%9F%BA%E6%9C%AC%E5%AE%9A%E7%90%86
微分積分学の基本定理
微分積分学の基本定理(びぶんせきぶんがくのきほんていり、英: fundamental theorem of calculus)とは、「関数に対する微分と積分は互いの逆操作である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。
微分積分学の基本定理は一変数の関数に対するものだが、多変数関数への拡張は、ストークスの定理として知られる。
定理
微分積分学の基本定理として知られる定理にはいくつか(等価でない)バリエーションがある。

つづく
183
(2): 132人目の素数さん [] 2023/03/09(木)21:19 ID:dVtCH7NE(2/6)
>>182
つづき

> (実はシュミットだそうだ) >>169

シュミットさんで、浮かぶのは”直交化”だけだが、下記の”Erhard Schmidt”さんか
(もう一人、Wolfgang M. Schmidtさんもヒットしたけどね、別人ね)

https://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%AB%E3%83%8F%E3%83%AB%E3%83%88%E3%83%BB%E3%82%B7%E3%83%A5%E3%83%9F%E3%83%83%E3%83%88
エルハルト・シュミット(Erhard Schmidt, 1876年1月13日 - 1959年12月6日)は、20世紀の数学の方向性に多大な影響を与えたドイツの数学者。
指導教員のダフィット・ヒルベルトの下で、1905年にゲッティンゲン大学において博士号を取得した。博士論文の題目は、Entwickelung willkurlicher Funktionen nach Systemen vorgeschriebener であり、積分方程式に関する研究を行った。
ヒルベルトと共に、関数解析学の分野において多大な貢献を遺した。
関連項目
グラム・シュミットの正規直交化法
https://en.wikipedia.org/wiki/Wolfgang_M._Schmidt
Wolfgang M. Schmidt (born 3 October 1933) is an Austrian mathematician working in the area of number theory.

> 2. ダジャレをいつたのは高木だが >>169
> 実は彼の考えは全く逆であった

高木先生が、「微分のことは微分で」と言ったところまでは正しいのかな?
だったら、>>166は成立じゃない?
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.049s