[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1677671318/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
660: 132人目の素数さん [] 2023/03/21(火) 22:55:40.01 ID:FNe6xnfw 田中昇とElie Cartanを知らない人のために https://www.ams.org/notices/201101/rtx110100020p.pdf http://rio2016.5ch.net/test/read.cgi/math/1677671318/660
665: 132人目の素数さん [] 2023/03/22(水) 16:07:47.24 ID:VqclUbtx >>660 >田中昇とElie Cartanを知らない人のために ありがとう 他意はないが、抜粋貼る (こうしておけば、一般検索から、ここに到達する人がいるので) https://www.ams.org/notices/201101/rtx110100020p.pdf Notices of the AMS Volume 58, Number 1 January 2011 From Cartan to Tanaka:Getting Real in the Complex World Vladimir Ezhov, Ben McLaughlin, and Gerd Schmalz It is well known from undergraduate complex analysis that holomorphic functions of one complex variable are fully determined by their values at the boundary of a complex domain via the Cauchy integral formula. This is the first instance in which students encounter the general principle of complex analysis in one and several variables that the study of holomorphic objects often reduces to the study of their boundary values. The boundaries of complex domains, having odd topological dimension, cannot be complex objects. This motivated the study of the geometry of real hypersurfaces in complex space. In particular, since all established facts about a particular hypersurface carry over to its image via a biholomorphic mapping in the ambient space, it is important to decide which hypersurfaces are equivalent with respect to such mappings - that is, to solve an equivalence problem for real hypersurfaces in a complex space. つづく http://rio2016.5ch.net/test/read.cgi/math/1677671318/665
666: 132人目の素数さん [] 2023/03/22(水) 16:08:34.37 ID:VqclUbtx >>665 >>660 >田中昇とElie Cartanを知らない人のために ありがとう 他意はないが、抜粋貼る (こうしておけば、一般検索から、ここに到達する人がいるので) https://www.ams.org/notices/201101/rtx110100020p.pdf Notices of the AMS Volume 58, Number 1 January 2011 From Cartan to Tanaka:Getting Real in the Complex World Vladimir Ezhov, Ben McLaughlin, and Gerd Schmalz It is well known from undergraduate complex analysis that holomorphic functions of one complex variable are fully determined by their values at the boundary of a complex domain via the Cauchy integral formula. This is the first instance in which students encounter the general principle of complex analysis in one and several variables that the study of holomorphic objects often reduces to the study of their boundary values. The boundaries of complex domains, having odd topological dimension, cannot be complex objects. This motivated the study of the geometry of real hypersurfaces in complex space. In particular, since all established facts about a particular hypersurface carry over to its image via a biholomorphic mapping in the ambient space, it is important to decide which hypersurfaces are equivalent with respect to such mappings - that is, to solve an equivalence problem for real hypersurfaces in a complex space. つづく http://rio2016.5ch.net/test/read.cgi/math/1677671318/666
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s