[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1677671318/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
144: 132人目の素数さん [] 2023/03/08(水) 20:56:16.69 ID:wlya33oV >>143 Xu Jonsson-Mustata conjecture で下記ヒットです これ関連かな? http://www.math.utah.edu/~jliu/Stanford%20talk20210226.pdf Complements and local singularities in birational geometry Jihao Liu University of Utah Stanford, Feb 26th, 2021 P7 Structure of the talk In this talk, I will introduce the complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov. I will start talking about the intuition of complements from the study of linear systems in birational geometry. Then, I will introduce the complements theory and talk about my joint work with J. Han and V.V. Shokurov on a complement conjecture of Shokurov. After that, I will briefly talk about the applications of the complements theory, especially its applications towards the study on local singularities in birational geometry. I will also talk about an interesting application in the opposite direction. In the end, I talk about some open problems. Without further notice, we work over an algebraically closed field k of characteristic zero, e.g., the field of complex numbers C. つづく http://rio2016.5ch.net/test/read.cgi/math/1677671318/144
145: 132人目の素数さん [] 2023/03/08(水) 20:56:33.45 ID:wlya33oV >>144 つづき P88 Applications of the complement theorem Although seemingly technical, our theorem on complements is expected to have many applications. A special case of our theorem, i.e., Birkar’s theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas: 1 The BBAB theorem (i.e., the boundedness of Fano varieties, BAB conjecture) ([Birkar 16], [Birkar 19]). 2 K-stability theory, e.g. Yau-Tian-Donaldson conjecture ([Y.Liu-Xu-Zhuang 21]), Jonsson-Mustat,?a conjecture, openness of K-semistability, Chi Li’s conjecture on minimizers of the normalized volumes ([Blum-Y.Liu-Xu 19], [Xu 20]). 3 Demailly?Koll´ar’s openness conjecture ([Xu 20]) 4 Log Calabi-Yau fibrations ([Birkar 18]). In the rest of the talk, I will talk about the application of our theorem on complements to the study of local singularities questions. In this case, Birkar’s result is not strong enough, while our result remains useful (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1677671318/145
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s