[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
405(3): 132人目の素数さん [] 2023/03/15(水)11:18 ID:eYGN6GRo(1/5)
>>404
ありがとう
へー
方程式論で有名なタルタリア氏 下記”「タルタリア(どもり)」というニックネーム”を連想したけど
「ニコロの顎と口蓋もフランス軍によって切り落とされた。これによって、ニコロは普通には話せなくなり、「タルタリア(どもり)」というニックネームが付けられた」か
良く生き延びたね
ハンディを負って、一層努力したに違いないね
(参考)
https://ja.wikipedia.org/wiki/%E3%83%8B%E3%82%B3%E3%83%AD%E3%83%BB%E3%83%95%E3%82%A9%E3%83%B3%E3%82%BF%E3%83%8A%E3%83%BB%E3%82%BF%E3%83%AB%E3%82%BF%E3%83%AA%E3%82%A2
ニコロ・フォンタナ・”タルタリア”(Niccolo Fontana "Tartaglia"、1499年または1500年-1557年12月13日)はイタリアの数学者、工学者、測量士。ヴェネツィア共和国の簿記係でもあった。アルキメデスやユークリッドの初めてのイタリア語訳を含む多くの著書を著し、数学関係の編集の分野で高く評価された。タルタリアは、史上初めて数学による大砲の弾道計算を行ったので弾道学の祖とされる。彼の導いた弾道は現代の理論からすれば誤りだが、45°の角度で射出した際に最も遠くに到達することは正しく導いた。
ガリレオ・ガリレイは彼の孫弟子である。タルターリアとも。なお後述するように「タルタリア」は生後につけられた渾名である。
生涯
1512年にはカンブレー同盟戦争でフランス軍がブレシアに侵攻し、さらなる悲劇を経験した。ブレシア軍は7日間に渡って街を守ったが、フランス軍がついに侵攻に成功すると、街の人達は虐殺された。戦争の終わりには、45000人を超える住民が殺されていた。
ニコロの顎と口蓋もフランス軍によって切り落とされた。これによって、ニコロは普通には話せなくなり、「タルタリア(どもり)」というニックネームが付けられた。
タルタリアは、資金が尽きる前に家庭教師からアルファベットをKまで習っただけであり、残りのLから先の文字は、墓石に刻まれた文字を手本に学んだという逸話がある。いずれにしても、彼は本質的に独学だった。
つづく
406(1): 132人目の素数さん [] 2023/03/15(水)11:19 ID:eYGN6GRo(2/5)
>>405
つづき
1535年の初めごろ、アントニオ・マリア・フィオールに数学の公開論戦を申し込まれ、これを受諾した。三次方程式の問題を互いに30問出し合い、30日後に多く解けた方が勝ちとした。タルタリアはこれに勝利し、名声を高めた。
彼が1543年に編集したユークリッド原論の初めての近代ヨーロッパ語訳となった本はとても重大なものであった。
彼はまたその理論に初めて近代的なコメントを付けた。この理論はタルタリアの弟子だったオスティリオ・リッチ(英語版)によって天文学の父として知られるガリレオに教えられ、ガリレオの研究に不可欠な道具となった。
タルタリアの公式
タルタリアは、4つの頂点の間の距離を用いて三角錐の体積を表すタルタリアの公式を考案したことでも知られる。
略
ここで d_{{ij}}は頂点 iと jとの間の距離を表す。これは三角形におけるヘロンの公式を一般化したものである。
(引用終り)
以上
409(2): 132人目の素数さん [] 2023/03/15(水)17:28 ID:eYGN6GRo(3/5)
>>405
追加
ポントリャーギン 失明して 数学者となった彼の専門分野は、幾何学
というのが、若いころは意味が取れなかった
抽象的な現代数学の幾何学だったんだね
https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%95%E3%83%BB%E3%83%9D%E3%83%B3%E3%83%88%E3%83%AA%E3%83%A3%E3%83%BC%E3%82%AE%E3%83%B3
レフ・セミョーノヴィッチ・ポントリャーギン(Лев Семёнович Понтрягин、1908年9月3日 - 1988年5月3日)は、ロシアの数学者。
略歴
ロシア革命前のモスクワに生まれ、ソビエト連邦崩壊直前にこの世を去った。彼の家庭はとても貧しく月謝の安い実験学校さえ行けず、4年制の小学校で最初の教育を受けた。14歳の時にプリムス・ストーブの爆発事故により失明した。そんな彼が数学者となれたのは母親の献身的な努力があったからだと言われている。 農家の主婦だった彼の母親タチヤーナ・アンドリェーエヴナ・ポントリャーギナは、彼が身を立てるための一切の世話を引き受けた。文献を読んで聞かせたり、論文に式を書き込んだり、さらに彼女自身外国語を習得して彼の完全な「秘書」を勤めた。数学者となった彼の専門分野は、幾何学(微分幾何学)だった。
1929年にモスクワ大学卒、1935年には物理・数学博士、教授、1938年には位相群論、連続群論を発表した。数々の数学的業績に対してレーニン賞、スターリン賞、ロバチェフスキー賞、ソビエト連邦国家賞、社会主義労働の英雄という称号などを授かった。
410(3): 132人目の素数さん [] 2023/03/15(水)18:00 ID:eYGN6GRo(4/5)
>>400 補足
>n=2 e1,e2
>そこから、四元数 の4次元にもって来るって
これ、数学ではよくある筋ですね
元々のハミルトンもこれだったような(下記)
要するに、普通は a + bi + cj の3次元から出発する
つまり、e1=i,e2=j を導入するのが普通の思考
だが、これでは下記 乗法と除法 の扱いがむずい
”4次元にもって来る”が、筋なんだ
https://ja.wikipedia.org/wiki/%E6%89%8B%E7%AD%8B_(%E5%9B%B2%E7%A2%81)
手筋 (囲碁)
手筋(てすじ)とは囲碁用語の一つで、通常より大きな効果を挙げることのできる着手のことである。多くの場合、平凡な発想では達し得ない、やや意外性を含んだ効果的な手を指すことが多い。単に「筋」(すじ)と呼ぶこともある。将棋やチェスなどにおいても同様の意味で使われる。
正しい手筋を身につけることは、囲碁上達の大きな要諦である。このため様々なレベルの手筋だけを反復練習する本が多数出版されている。
https://ja.wikipedia.org/wiki/%E5%9B%9B%E5%85%83%E6%95%B0
四元数(英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて
a + bi + cj + dk
と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。
i^2=j^2=k^2=ijk=-1
このとき 1, i, j, k は実数体上線型独立である。
歴史
四元数の成す代数系は、1843年にウィリアム・ローワン・ハミルトンによって導入された[6]。これにはオイラーの四平方恒等式(1748年)やオリンデ・ロドリゲス(英語版)の四つの径数を用いた一般の回転のパラメータ付け(英語版)(1840年)などを含む重要な先駆的研究があったが、何れもその四径数回転を代数として扱ったものではなかった[7][8]。ガウスもまた1819年に四元数を発見していたのだが、そのことが公表されるのは1900年になってからのことである[9]。
つづく
411(1): 132人目の素数さん [] 2023/03/15(水)18:00 ID:eYGN6GRo(5/5)
>>410
つづき
ハミルトンは複素数が座標平面における点として解釈できることを知っていて、三次元空間の点に対して同じことができる方法を探していた。空間の点はそれらの座標としての数の三つ組によって表すことができ、ハミルトンはそれらの三つ組に対して加法や減法をどのようにすべきかはずっと前から分かっていたのだが、乗法と除法をどう定めるかという問題については長く行き詰ったままであった。ハミルトンは、空間における二点の座標の商をどのように計算すべきかを形にすることができなかったのである。
四元数についての大きな転換点がついに訪れたのは、1843年10月16日の月曜日、ダブリンにおいてハミルトンが理事会の長を務めることになるアイルランド王立アカデミー(英語版)への道すがら、妻とともにロイヤル運河(英語版)の引き船道に沿って歩いているときであった。四元数の背景となる概念が頭の中で形になり、答えが明らかになったとき、ハミルトンは衝動を抑えられずに、四元数の基本公式
i^2 = j^2 = k^2 = ijk = -1
を、渡っていたブルーム橋(英語版)の石に刻みつけた。
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s