[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
370: 132人目の素数さん [] 2023/03/14(火)07:53 ID:5bTCTU61(1/7)
>>367
> Q2.実数体R上の有限次元線型空間である斜体はR,Cと四元数体Hのみであることを示せ

用語 斜体 の使い方が古いな
下記の通り
(桂か?(下記))

https://www.math.kyoto-u.ac.jp/~yukie/
雪江明彦
代数の教科書について

https://www.math.kyoto-u.ac.jp/~yukie/yougo.pdf
教科書の 用語について (2012/7/7更新)

2. 「可除環」か「斜体」か
3 巻で「必ずしも可換でない体」の呼び方が必要になったので,1,
2 巻を増刷したときにここで用語を変えなかったらもう変えられないと思って初版第
1 刷を買われた方には申し訳ないと思ったが用語を変えることにした. さて「必ずし
も可換でない体」のことを何と呼ぼう? 桂では「斜体」と呼んでいるが,この用語を
使う気にはなれなかった. それは英語にしたとき,「ヴェーダーバーンの定理」の状況
では division ring, division algebra が完全に定着しているから. 「斜体」を英語にし
たら「skew field」だろうが,ヴェーダーバーンの定理とかブラウアー群などについて
語るとき skew field という用語を使うことはないだろう. これが英語で division ring
なら「可除環」がよいだろうと思った. 永田の可換体論では体,可換体という用語だ
が,今となっては「体」とは日本語ではほとんどの場合可換体を意味するようになっ
ていると思うので,可換な体を最初から体と呼び,必ずしも可換でない体を可除環と
呼ぶことにした. いずれにせよ,1,2 巻ではほとんど「体」しか出てこないので,問
題になるのは 3 巻の補足に入ってから. そのときは「可除環」とした理由がわかって
もらえるのではないだろうか.
(引用終り)

確かに確認すると、雪江 代数学2 2019年 第1版9刷の
P3では
加除環:加減乗除ができる集合
体 :可換な加除環
斜体:非可換な加除環
となっている

いまは、これが日本でも、そして海外でも普通では
つまり、”斜体:非可換な加除環”です!
371: 132人目の素数さん [] 2023/03/14(火)07:58 ID:5bTCTU61(2/7)
>>369
>ウェッダーバーンの定理の証明なんて

手元に
雪江 代数学3があるよ
P350 定理7.5.15 (ヴェーダーバーンの定理)
とある
証明は、2ページ弱
なんということもない

ネット検索でも、どこかには見つかるだろうさ
(英文かもしらんがね)
まあ、アホには読めないさwww
372: 132人目の素数さん [] 2023/03/14(火)08:02 ID:5bTCTU61(3/7)
>>361-362 補足
>すぐに、行列のパラダイムは、行列とその演算を用いて表現することでほかの多元数を説明するようになる。1907年にジョセフ・ウェダーバーン(英語版)は結合的な超複素数系は必ず行列環か行列環の直和として表現されなければならないことを示した。
>これ以降、ウェダーバーンのエディンバラ大学での修士論文タイトルにも見られるように、このような超複素数系を言い表す用語として結合多元環 (associative algebra) が用いられるようになっていった。それでもなお、八元数や双曲四元数(英語版)のような非結合的な体系の表す別種の超複素数系があることに注意すべきである。

ウェダーバーンの修士論文だったみたい
ウェダーバーンの定理って
384: 132人目の素数さん [] 2023/03/14(火)20:52 ID:5bTCTU61(4/7)
>>380
ありがとう
なるほど
それは一つの見解ではあるね

で、正しいかどうか分からないが
Inter-universal geometry と ABC予想 (応援スレ) 68
2chスレ:math
281 2023/03/14(火) 02:38:22.45 ID:EzJL6k5J
>>12
Joshi は自分の論文のパートIIIでABC予想解けるって言ってたけど
先だって出したのはパートIIの書き直しだな早よしろ
ショルツェは女子と話してて自分が文句があるのは望月の書き方みたいな事言ってたみたいだし
早よ決着つけて
(引用終り)

これ下記かな? JoshiのパートIIIでABC予想解けて、認められたら
IUTにも春が来るかな?w

https://arxiv.org/abs/2303.01662
[Submitted on 3 Mar 2023]
Construction of Arithmetic Teichmuller spaces II: Proof of a local prototype of Mochizuki's Corollary~3.12
Kirti Joshi
This paper deals with consequences of the existence of Arithmetic Teichmuller spaces established arXiv:2106.11452 and arXiv:2010.05748. Theorem~9.2.1 provides a proof of a local version of Mochizuki's Corollary~3.12. Local means for a fixed p-adic field. There are several new innovations in this paper. Some of the main results are as follows. Theorem~3.5.1 shows that one can view the Tate parameter of Tate elliptic curve as a function on the arithmetic Teichmuller space of [Joshi, 2021a], [Joshi, 2022b]. The next important point is the construction of Mochizuki's Θgau-links and the set of such links, called Mochizuki's Ansatz in \S6. Theorem~6.9.1 establishes valuation scaling property satisfied by points of Mochizuki's Ansatz (i.e. by my version of Θgau-links). These results lead to the construction of a theta-values set (\S8) which is similar to Mochizuki's Theta-values set (differences between the two are in \S8.7.1). Finally Theorem~9.2.1 is established. For completeness, I provide an intrinsic proof of the existence of Mochizuki's log-links (Theorem 10.9.1), log-links (Theorem~10.14.1) and Mochizuki's log-Kummer Indeterminacy (Theorem~10.19.1) in my theory.
386
(1): 132人目の素数さん [] 2023/03/14(火)21:38 ID:5bTCTU61(5/7)
>>381
あららのら!www
 >>330
"1には解けぬ問題
Q1.実数体R上の有限次元線型空間である可換体はRと複素数体Cのみであることを示せ
Q2.実数体R上の有限次元線型空間である斜体はR,Cと四元数体Hのみであることを示せ"

だったよね(特に、”1には解けぬ問題”)
でもな >>341で の東大数学科出身のプロ数学者が、
「小野孝先生の有名な本のp.192-193」>>336と言って
彼は>>341の最後で「小難しい技術的なところがあるので覚えられない」として、
小野本を見ながらであることを示唆している

要するに、ここは試験場でも教室でもない
本を見るのもありだし、web検索もありのオープンな空間だ

だから、私がweb検索をするのも、上記東大数学科出身のプロ数学者が小野本を見るのも似たようなもの
(理解の深さは違うとしてもだw)

で、お主がやったことは、
おいらがweb検索した Frobenius theorem (real division algebras) https://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)
に、乗っかって、コメント付けただけじゃん

いや、それは良いよ
悪いとは言わないが
”1には解けぬ問題”ではないだろう
残念だったろうがね

四元数の話を聞いたのは、いつだったか思い出せない
高校で教師が複素数のついでに話したような気もするし
大学1年の代数学に、話だけはあったような気もする
そして、多元数、多元体というキーワードも当然知っていた

小野本は持ってないけど、代わりのweb検索は容易にできる
なお、昔は岩波数学辞典(第二版)はよく見ていた(web検索がなかったから)
もしweb検索ができなければ、岩波数学辞典は見たろうね(それだけでは解けないだろうが、ヒントはつかめる)

ああ、そうそう
おサルさん、がんばったね
えらい、えらいね~!
387
(1): 132人目の素数さん [] 2023/03/14(火)21:46 ID:5bTCTU61(6/7)
>>385
>この論文で引用されているJoshiさんの論文が
>一つも専門誌に掲載されたことがないのが気になった。
>自分の専門にもこの手の人はいるなあと思った。

なるほど
それは、かなり専門的な鋭い分析だね

今しばし、白か黒かの決着はかかりそうかも
Joshiさんの論文がどうなるかは知らないが

arXivで、日付だけは先付けできているんだ
IUTが認められれば、どっかに掲載される可能性あるだろうし

逆なら、一緒に沈むだろう
391
(7): 132人目の素数さん [] 2023/03/14(火)23:36 ID:5bTCTU61(7/7)
>>388-390
アホが必死だなw

確かに、Frobenius theorem (real division algebras) https://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)
は、斜め読みだよ
おれも、いわば>>339同様
”ちょっと時間をかければ要点をまとめて
書くのは難しくないが
そこまで暇じゃない”ってことだw

それはともかく、
普通は、出題者なら
「なんだ、同じ種本見つけたか」とか言ってから
コメントを書きそうなものだが
あんたは、何を種本にしていたの?ww

でもって、ウェブからの引用を否定しておきながら
おれの引用に乗ってくるところがね~
サイコパス丸出しだね 2chスレ:math
(煮ても焼いても食えないw)

ケイリー・ハミルトンの定理>>381は、高校数学に行列が入っていたときに
チラ見したチャート式に書いてあったね 2x2だけど(下記)
別に難しくないだろ?w
https://www.geisya.or.jp/~mwm48961/kou2/mobile/matrix_mul2_m.html
※旧教育課程の高校数学Cに含まれていた「行列」について,このサイトには次の教材があります.
== ケーリー・ハミルトンの定理 ==

代数学の基本定理>>381は、複素数の範囲で多項式が1次式に因数分解できることの言い換えにすぎないし
(今の場合、そういう使い方だろ)

それより ”The rank?nullity theorem”https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem
という重要キーワード抜かしている気がするけどww

Frobenius theorem (real division algebras)の証明の中で、
n=2としておいて、四元数 の4次元にもって来るところが、ちょっと技巧的と思った
(そこが、証明のキモじゃないかと思ったよ)
十分フォロー出来なかったけど、時間できたら考えてみるわw
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s