[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ2 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
919
(2): 132人目の素数さん [] 2023/04/05(水)13:34 ID:joMjBMfa(4/5)
>>897 補足

そうそう
周期 (数体系)下記で
これを教えてくれたのは
おっちゃんだったね

当時、数学科の4年生が来て、卒業研究で積分をテーマにするというので
おっちゃんが、積分関連で周期 (数体系)があると言ったのだった

(参考)
https://ja.wikipedia.org/wiki/%E5%91%A8%E6%9C%9F_(%E6%95%B0%E4%BD%93%E7%B3%BB)
周期 (数体系)
Maxim Kontsevich and Don Zagier (2001) は周期の概念を導入し、周期に関するいくつかの予想について述べた論説である。

分類の目的
周期は、代数的数と超越数の間を埋める橋渡しとなるものである。代数的数のクラスは多くのよく知られた数学定数を含めるためには狭すぎ、また超越数の全体は可算でなくその元は一般には計算可能でない。これに対し周期全体の成す集合は可算であり、任意の周期は計算可能[1]で、特に決定可能(英語版)である。

定義
与えられた実数が周期であるとは、それが有理数係数多項式不等式として与えられたユークリッド空間内の領域の体積の差として与えられるときに言う。より一般に、与えられた複素数が周期であるとは、その実部および虚部がともに周期となるときに言う。

代数的数係数の有理函数に対して、代数的数係数の多項式不等式で与えられる ?n 内の領域上でとった、絶対収束積分値もまた周期となる(これは、そのような積分や代数的無理数が適当な領域上の面積として表せることによる)。

予想
周期であることが知られている定数の多くが、超越函数の積分によっても与えられる。

代数的数の有用な性質として「二つの代数式が相等しいかどうかをアルゴリズム的に決定できる」ことが挙げられる。そしてコンツェヴィッチとザギエの予想は「周期が相等しいかどうかということも決定可能である」ことを導くものとして理解できる: 計算可能な実数が相等しくないことは再帰的に枚挙可能であることが知られており、また逆に、二つの積分が一致するならばそのことを確かめるアルゴリズムは、それら積分の一方を他方に変換する可能なすべての方法を試すことによって為される。

つづく
1-
あと 83 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.023s