純粋・応用数学・数学隣接分野(含むガロア理論)21 (252レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
194
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/27(日) 23:58:28.22 ID:6EVaf5Z4(8/8) AAS
>>188
ふっふ、ほっほ
踏みつけたゴキブリ、しぶといなぁ〜、まだ動いているよw ;p)

(引用開始)
>こちらの式の問題点は、>>177に指摘の通りで ”「x は無限集合である」という命題を M(x) とし”の部分であって
>ここを きちんと 集合の言葉で書けるかどうか? そこが問題です
なんとか先生のφ(x)を使え
(引用終り)

「x は無限集合である」という命題が M(x)だというが
言葉で書けば簡単だが、”無限”という用語は使えないよ
”無限”という用語を使わずに
「x は無限集合である」という意味を 集合の言葉として M(x)を どう書けばいいのか?
それが、問題だ by ハムレット

なお
『N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}(Aは無限公理により存在する集合を任意に選んだもの』>>185
において
下記の ja.wikipedia 順序数の大小関係 を借用して
A={0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))}
を考えよう

x1={0, 1, 2, 3, ............, ω, S(ω)}
x2={0, 1, 2, 3, ............, ω, S(ω), S(S(ω))}
x3={0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))}

このとき、xi⊂A |i=1,2,3 だから
∩(i=1〜3) xi={0, 1, 2, 3, ............, ω, S(ω)}
となる
N≠∩(i=1〜3) xi
ですよ

つまり、自然数Nに余計な ω, S(ω) が入りましたw ;p)
なので、『N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}』このままでは
自然数Nの規定としては、ちょっとまずい

で、記号∩ なんて、メンドクサイものを使うのをやめれ
>>115 仏語 Axiome de la réunion、英語 Axiom of union
>>153 渕野 昌先生、>>62 Akito Tsuboi 筑波大
みんな 記号∩は 使わないぞw ;p)

(参考)
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
順序数
順序数の大小関係
・α が順序数のとき、S(α) ≔ α ∪ { α } は α より大きな順序数のうちで最小のものである。S(α) を α の後続者 (successor of α)と呼ぶ
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))
195
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/28(月) 00:07:45.29 ID:DgNswCrs(1/2) AAS
>>194 引用文献訂正

>>115 仏語 Axiome de la réunion、英語 Axiom of union
 ↓
>>62 独wikipedia https://de.wikipedia.org/wiki/Unendlichkeitsaxiom
仏wikipedia https://fr.wikipedia.org/wiki/Axiome_de_l%27infini
英wikipedia https://en.wikipedia.org/wiki/Axiom_of_infinity
196: 132人目の素数さん [] 2025/07/28(月) 00:24:23.69 ID:0TeRvI4n(1/10) AAS
>>194
>”無限”という用語は使えないよ
誰がそんなこと言った? 言葉が通じないの? 言語障害? 病院行けよ

>『N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}(Aは無限公理により存在する集合を任意に選んだもの』>>185
>において
>下記の ja.wikipedia 順序数の大小関係 を借用して
>A={0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω)))}
>を考えよう
はい、大間違い。
なぜなら帰納的集合の定義により S(S(S(ω)))∈A ならば S(S(S(S(ω))))∈A だから。
君、定義を読めないの? だから論理を勉強しろと何度も言ってるのに何で勉強しないの? 何でそんなに勉強嫌いなの?

>このとき、xi⊂A |i=1,2,3 だから
>∩(i=1〜3) xi={0, 1, 2, 3, ............, ω, S(ω)}
>となる
>N≠∩(i=1〜3) xi
>ですよ
まったくトンチンカン。
なぜなら帰納的集合はωを要素として持たなくてもよい、すなわち、「あらゆる帰納的集合の共通部分」になってないから。
君が勝手に妄想した集合群で共通部分とっても余計な元が残る、至極当たり前、それだけ。馬鹿丸出し。

>なので、『N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}』このままでは
>自然数Nの規定としては、ちょっとまずい
誤理解・誤解・妄想にもとづく言いがかり。

>で、記号∩ なんて、メンドクサイものを使うのをやめれ
でたああああああああ ∩恐怖症w

サル、馬鹿丸出しで爆死 なーむーーー
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.022s