純粋・応用数学・数学隣接分野(含むガロア理論)21 (253レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
175
(1): 132人目の素数さん [] 2025/07/27(日) 16:23:49.15 ID:BtC8baTp(16/27) AAS
>>171
>自然数全体の集合は、最小の無限集合として定義されます。
はい、大間違いです。
結果的に最小の無限集合だったとしてもそれが定義ではない。すなわち定義と定理をはき違えている。

>まず、何でもいいので1つ無限集合 a を選びます。 また、「x は無限集合である」という命題を M(x) とし、 以下のような集合 a^ を作ります。
>a^ = {x ∈P(a) | M(x)}
>P (a) は a の「冪集合」です。 すなわち、a^ は a の部分集合のうち、無限集合になるようなもの全てを集めた集合です。
>そして、a^ の全ての元の共通部分を取ります。
>ωa = ∩a^
これは
>N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}
とまったく同じであることは分かる?
177
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/07/27(日) 17:12:08.61 ID:WsIwlYym(4/4) AAS
>>175
(引用開始)
>まず、何でもいいので1つ無限集合 a を選びます。 また、「x は無限集合である」という命題を M(x) とし、 以下のような集合 a^ を作ります。
>a^ = {x ∈P(a) | M(x)}
>P (a) は a の「冪集合」です。 すなわち、a^ は a の部分集合のうち、無限集合になるようなもの全てを集めた集合です。
>そして、a^ の全ての元の共通部分を取ります。
>ωa = ∩a^
これは
>N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}
とまったく同じであることは分かる?
(引用終り)

ふっふ、ほっほ
”まったく同じ”とは、思わない
結果的に、同じ自然数の集合 N=ωa が示せたとしても
手法が違うよね

つまり
1)”a^ = {x ∈P(a) | M(x)}”は、冪集合 P (a) を使っていることが 一つの工夫だね
 即ち M(x)無しで 冪集合 P (a) が、自然数の集合 Nを 含んでいることは言えるからね
 但し、M(x)無しで 集合積 ∩a^ とすると、N=ωa よりも 集合が小さくなるだろう
 問題は、M(x)をどう定義するか?
 へたをすると、”M(x)が 自然数の集合 N を定義する”と言った 途端に 循環論法だね
 つまり、”M(x)が 自然数の集合 N を定義する”のに、それを使って
 N=ωa 主張すると 循環しているよね
2)”N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”は
 だれかが、なにかを勘違いして 書いた気がするな

>>176
>内容が無い

似た話を、昔誰かのホームページかブログかで
ノイマンが、すべての無限集合の共通部分 つまり 無限集合の最小のもの
として、自然数 N=ωa を定義した みたいな書き込みを見た記憶がある
そのときは、へーと関心したのだが・・w ;p)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.028s