[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
89(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 07:37:55.49 ID:vPN/J1lJ(5/14) AAS
>>86-87
似ているが違う事項(項目)は、
その違いを明確にしながら、
関連項目として学ぶべし
だな
21(13): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/16(日) 11:14:04.73 ID:JTc4r8fR(19/55) AAS
さてさて、
時枝問題(数学セミナー201511月号の記事)まとめについては
スレ47 2chスレ:math ご参照!
( 特に時枝記事アスキー版 スレ47 2chスレ:math )
スレ54 2chスレ:math
94 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2018/11/01(木) ID:ypCHJLQo
>>89
>「どの同値類が来ても、それに対応する(有限値の)決定番号を準備出来ますよ」
>ということです
>だから決定番号が有限に収まる確率は1になる
突然で、話が見えない人も多いだろうから、簡単に書くと
数学セミナー 2015年11月号 箱入り無数目 時枝 正(下記参考)で
話の前提は、こうだったね
1)可算無限個の箱の列(まあ自然数で1番〜n番までの箱で、n→∞を実現したよと)
2)箱に任意の数を入れる(実数でもなんでも良し。重複も許す)
3)この数列を、列のしっぽの同値類で分類する
4)二つの数列において、ある番号mから先の数列しっぽが一致するとき、mを決定番号と呼ぶ
で、その流儀の説明倣えば
a)決定番号が1になる確率(2列の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから)
b)決定番号が2になる確率(2列の2番目以降の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから)
c)以下同様に、決定番号がkになる確率(2列のk番目以降の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから)
d)よって、どの有限な決定番号を考えても、それ以降の全ての、しっぽの対応する可算無限個の箱の数が、一致する場合の確率は、0になります !!(^^ (∵しっぽが可算無限個の箱の列だから)
(参考)
https://www.nippyo.co.jp/shop/magazine/6987.html
数学セミナー 2015年11月号
箱入り無数目───────────────時枝 正 36
(引用終り)
ほぼほぼ、時枝は、「ぷふ」さんのおかげで完全終了です! \(^^)/
つづく
29(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/16(日) 11:26:36.49 ID:JTc4r8fR(26/55) AAS
>>28
つづき
<追加>
スレ55 2chスレ:math
328 自分:現代数学の系譜 雑談 古典ガロア理論も読む 2018/12/05
数学科卒落ちこぼれのピエロちゃん
下記の 「超函数の理論I 第2章 層 伊東由文 PDF」 読める?(^^
芽と茎と層と前層の関係を抜粋してあげたよ
数日前は、これさっぱり読めなかったが、なんとなく雰囲気が掴めてきた
読めれば、反例になっていることが分るだろう
まあ、世の中の 数学科院生で 分っている1割さんから見れば、
(>>89より「教科書・参考書の例題が鬼のように難しい 理系の9割が理解していない」)
スレ主は、まだまだ分ってないと言われるだろうが
だが、”数学科院生の分っている1割さん>>>スレ主>数学科卒落ちこぼれのピエロちゃん”
かなと思う今日この頃です (^^
http://wwwa.pikara.ne.jp/yoshifumi/
伊東 由文のホームページ
http://wwwa.pikara.ne.jp/yoshifumi/homepageindex(2)/THF-I.html
超函数の理論I 伊東由文 徳島大学名誉教授・理学博士
http://wwwa.pikara.ne.jp/yoshifumi/THF-I/THF-I-2.pdf
超函数の理論I 第2章 層 伊東由文
(抜粋)
P1
例2.1.1(2)
Oxをxのある近傍で正則な関数のにおける芽のつくる環とする。
各x∈ωに対し、γx(f)をxにおいてfによって定まる芽とする。
P6
この関係は同値関係になるから上の商空間が意味をもつ。Fxをxにお
ける茎といい、s∈F(U)のFxにおける像をsのxにおける芽といい、
sxと表す.
P9
この例のように、関数の作る前層{F(U)}は局所化の原理を満た
していることが多い.しかしR^n上の2乗可積分関数のようなも
のは前層{L2(U)}をつくると, 条件(S1)を満たしているが条件
(S2)は満たさない. 前層{L2(U)}から誘導される層は, 局所2乗可
積分関数芽の層L2locになる. したがって, 一般に関数空間の族は
前層になるということによって特徴付けられる.そのうち特に良
い性質を持つ関数の空間のつくる前層は層になる. 本書で考察する
関数概念の一般化である超函数も局所化の原理を満たすようなもの
として特徴付けられる.
(引用終り)
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s