[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
706(11): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:38 ID:PWZHndJJ(9/14) AAS
(>>673の改訂版)
3)さて、本論
反例を構成する。(なお、当然だが、反例は一つで良い(定理の証明は全てを尽くす必要があるが))
a)時枝記事(詳しくは>>21及び、記号などは>>644ご参照)において、箱の数を、十分大きな*)「有限」個の場合を考える。
(*):例えば無限に近い巨大な数と思って貰えば分り易いだろう
例えば、有限の範囲で、貴方の知っている(あるいは考え得る)大きな数を頭に浮かべてください。その数+1で結構です)
b)箱の数 L=100mとする。 ここにmは、前述のように十分大きな正整数とする。
c) L=100m個の箱を、100列のm個の箱の列に並び変える。
m個の長さの数列の しっぽの同値類を考えることができ、決定番号dを決めることができる。
決定番号dは、1<= d <=m の値を取る。
c')ここで、簡単のために、部分集合として、決定番号が、1<= d <=(m-1)の場合を考える。
d)100列の決定番号の大小比較から、100列中のあるk列で
決定番号 d^k 1<= k <=100 が、最大値 D = max(d^1, d^2,・・・d^100) を取る確率は、1/100に過ぎない
D >= d^k である確率は、99/100となる。
e)後は、時枝記事に書いてあるように、k列で(D+1) 番目から先の箱だけを開け、k列の代表のD 番目の数を見て、k列の代表のD 番目の数を推測すれば、的中確率は99/100となる。
f)つまり、上記の確率について、確率空間 (Ω,F,μ) において、標本空間 Ω={1,・・・,100} と取れることを意味する。
g)標本空間 Ω={1,・・・,100}とすることによって、“D >= d^k である確率は、99/100” が導かれる。
これにより、k列で(D+1) 番目から先の箱だけを開け、k列の代表のD 番目の数を見て、k列の代表のD 番目の数と一致すると推測すれば、的中確率は99/100となる。
時枝記事の解法が成立する。
(以上は、>>644-645に記述の数学ロジックの通りです)
以上です。
707(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:38 ID:PWZHndJJ(10/14) AAS
>>690
ありがとう
(>>687)
>もしかして>>678が反例のつもりなの?
Yes
正確には、修正版>>706 を見て下さい
ピエロちゃん( ID:h9L92WO7 )が、正確に反応していると思うが、これ反例です。
殆ど自明だが、後で説明します
715(4): 132人目の素数さん [] 1970/01/01(木) 09:33:38 ID:h9L92WO7(16/30) AAS
スレ主は>>706の改竄版ではなく以下の正式版に対する反例を提示すべし
a)時枝記事(詳しくは>>21及び、記号などは>>644ご参照)において、
箱の数を、無限個と考える。
c)無限個の箱を、100列の無限箱の列に並び変える。
無限長の数列の しっぽの同値類を考えることができ、決定番号dを決めることができる。
決定番号dは、1<= d の値を取る。
d)100列の決定番号の大小比較から、100列中のあるk列で
決定番号 d^k 1<= k <=100 が、最大値 D = max(d^1, d^2,・・・d^100) を取る確率は、1/100に過ぎない
D >= d^k である確率は、99/100となる。
e)後は、時枝記事に書いてあるように、k列で(D+1) 番目から先の箱だけを開け、k列の代表のD 番目の数を見て、k列の代表のD 番目の数を推測すれば、的中確率は99/100となる。
f)つまり、上記の確率について、確率空間 (Ω,F,μ) において、標本空間 Ω={1,・・・,100} と取れることを意味する。
g)標本空間 Ω={1,・・・,100}とすることによって、“D >= d^k である確率は、99/100” が導かれる。
これにより、k列で(D+1) 番目から先の箱だけを開け、k列の代表のD 番目の数を見て、k列の代表のD 番目の数と一致すると推測すれば、的中確率は99/100となる。
時枝記事の解法が成立する。
716(1): 132人目の素数さん [] 1970/01/01(木) 09:33:38 ID:h9L92WO7(17/30) AAS
ぶっちゃけスレ主の>>706に対する>>715の指摘は
望月新一のABC予想の証明に関するショルツの指摘
同様の決定的なものであるから、安易な反論は無意味
718(8): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:38 ID:PWZHndJJ(13/14) AAS
>>715
必死に言い訳をするピエロちゃん ップ(^^
>箱の数を、無限個と考える。
無限個で無ければならない理由は??
実際、時枝記事の”ふしぎな戦略”において、
お説(>>709)のように、時枝記事は”1)選択公理、2)数列しっぽの同値類”で成り立っている
既に、確認したように、貴方がすがっていた「選択公理」は、無限集合に限定されず、「選択公理」でできることは有限集合でも同じことは可能だ
”数列しっぽの同値類”は、上記(>>717)のように、有限長数列でも可能だ
また、同値類から導かれる代表元と決定番号もまた、有限長数列でも可能だ
なので、有限長の数列で論理が破綻するなら、無限長でも論理が破綻するだろう
というより、何よりも、反例は一つで良い。
有限長の数列ではあるけれども、そこに反例が存在するならば
「無限」という要素を加えて、”無限長ゆえに成り立つ”ということを、改めて証明すべき
ところで、時枝記事を読む限り
時枝記事前半の”ふしぎな戦略”の説明において、無限長で無ければならない数学的要素は、一つも無い
(繰返すが、時枝記事は”1)選択公理、2)数列しっぽの同値類”で成り立っている)
全て、有限長数列でも可能な数学的要素のみしか使われていない
(これについては、例えば、時枝記事アスキー版 スレ47ご参照 2chスレ:math )
有限で、唯一の不具合は、有限の場合、「D=m の場合、開けるべき箱が無い」(>>682)ということだが
”c')ここで、簡単のために、部分集合として、決定番号が、1<= d <=(m-1)の場合を考える”とすること(>>706)で、この不具合は回避できる
どうぞ、”数列が無限長で無ければならない理由”を説明してください
というより、”数列が無限長で無ければならない理由”が説明できない以上、それは数学ではない!!
そして、”数列が無限長で無ければならない理由”を説明する過程で、
貴方は「なぜ時枝の”ふしぎな戦略”が成り立たないか」を自得するだろう
以上
727(3): 132人目の素数さん [] 1970/01/01(木) 09:33:38 ID:h9L92WO7(19/30) AAS
>>718
>時枝記事を読む限り
>時枝記事前半の”ふしぎな戦略”の説明において、
>無限長で無ければならない数学的要素は、一つも無い
「無限長で無ければならない数学的要素」なら
>>682が真っ先に指摘したぞ
貴様も後で述べてる↓これだ
>有限で、唯一の不具合は、有限の場合、
>「D=m の場合、開けるべき箱が無い」(>>682)
>ということだが
ところで
>簡単のために、部分集合として、
>決定番号が、1<= d <=(m-1)の場合を考える
>とすること(>>706)で、この不具合は回避できる
箱はm個だが決定番号mの列は想定しない、ということなら
m番目の箱を見れば、m-1番目の箱も予測できる
なぜなら、決定番号がm-1までしかないのだから
決定番号がm-1だとしても代表元のm-1番目と
m-1番目の箱の中身が一致する
なんだ反例にならんじゃないかw
貴様、また自爆か?
不具合回避でせっかくの反例を潰してしまったようだなwww
ギャハハハハハハ!!!
733(1): 132人目の素数さん [] 1970/01/01(木) 09:33:38 ID:y4r2VQPB(11/16) AAS
>>706
「箱の数が有限だと時枝解放は成立しない」に対する反例ってこと?
で、
>c')ここで、簡単のために、部分集合として、決定番号が、1<= d <=(m-1)の場合を考える
↑の怪しげな宣言は何?
問題を変えましたという宣言?
いやいやw 試合の途中で勝手にゴールの位置変えちゃダメでしょw
741(2): 132人目の素数さん [] 1970/01/01(木) 09:33:38 ID:h9L92WO7(27/30) AAS
ID:y4r2VQPBさん
以下の文章を読んでいただき
感想をお願いします
---
>簡単のために、部分集合として、
>決定番号が、1<= d <=(m-1)の場合を考える
>とすること(>>706)で、この不具合は回避できる
箱はm個だが決定番号mの列は想定しない、ということなら
m番目の箱を見れば、m-1番目の箱も予測できる
なぜなら、決定番号がm-1までしかないのだから
決定番号がm-1だとしても代表元のm-1番目と
m-1番目の箱の中身が一致する
なんだ反例にならんじゃないかw
753: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:39 ID:5JqLTK2h(4/10) AAS
>>726
>「時枝記事は成り立つと主張する数学の論理(数学ロジック)」とは何者かを示しなさいな。
それって、一昨日時間を取りましたよね。言い逃れできないように。皆さん合意したはず。
そして、>>706に“(以上は、>>644-645に記述の数学ロジックの通りです)”と纏めています
754: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:39 ID:5JqLTK2h(5/10) AAS
>>706
おっと、リンク間違っているね
リンク訂正
(>>673の改訂版)
↓
(>>678の改訂版)
755: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:39 ID:5JqLTK2h(6/10) AAS
>>737
>>”無限長ゆえに成り立つ”ということを、改めて証明すべき
>無限の場合は既に証明されてます。時枝記事を読んでください。
はい
その(証明)(カッコ付き)は、「無限」でなくともそのまま成立します。
「有限」の場合でも“部分集合として、決定番号が、1<= d <=(m-1)”(>>706)とすることでOKですね
757(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 1970/01/01(木) 09:33:39 ID:5JqLTK2h(8/10) AAS
さて本題
>>718-719の補足:
1)>>706を時枝記事の有限モデルと名付けよう。(有限数列のしっぽの同値類は>>717に定義の通り)
2)これは、反例です(>>707の通りです。殆ど自明だが、後で説明します)
3)さらに補足すると、決定番号 d^k 1<= k <=100 で、最大値 D = max(d^1, d^2,・・・d^100) が与えられたとしよう。
その場合、有限モデルで、m+α(“プラスアルファ”と読む(^^。α>=1の整数)と取ることで、このような決定番号をカバーする有限モデルを、構築することができる。
4)なお、>>706でピエロの“g)標本空間 Ω={1,・・・,100}”が正当化されるのは、「決定番号 d^k 1<= k <=100 で、最大値 D = max(d^1, d^2,・・・d^100)」が与えられからであり、そのような場合は、必ずこのような決定番号をカバーする有限モデルを構築することができる。(上述3)の通り。)
5)繰返すが、時枝記事前半の”ふしぎな戦略”の説明では、無限長で無ければならない数学的要素は一つも無い。従って、有限モデルを構築することができる。時枝記事に書かれている”ふしぎな戦略”には、必ずそれをカバーする有限モデルを構築することができる。
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s