[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
658(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/30(日) 08:54:40.40 ID:A4Yw8jtX(7/8) AAS
>>655
ありがとう
スレ主です。>>656(”念のため、>>652にもレスしておくれ”)と被ったな
他に、言いたいことないですか?(^^
116(4): 132人目の素数さん [sage] 2018/12/18(火) 03:20:23.69 ID:Rxviyods(2/16) AAS
(>>115の続き)
これは前スレの>658の大雑把な証明
>一般に、任意の正の超越数xと、任意の |y|≠0 かつ |y|≠1 なる代数的数 y∈R に対して、log_x|y| は無理数である。
>或る正の超越数xと、或る |y|≠0 かつ |y|≠1 なる代数的数 y∈R が存在して、log_x|y|∈Q とすると、|y|≠0 かつ |y|≠1 から
>log_x|y| に対して或る既約有理数 p/q (p,q)=1 q>1 が存在して log_x|y|=p/q から x^{p/q}=|y| となって x^{2p/q}=y^2。
>xは正の超越数であるから、x^{2p/q} は正の超越数である。しかし、yは実数の代数的数だから、y^2 は正の代数的数である。
>従って矛盾が生じる。背理法が適用出来るから、背理法を適用すると、示すべき結論は導かれる。
とは何も変わっていない。強いていえば、正の実数xを底とする対数関数の定義域が I= (-∞,0)∪(0,+∞) から
(0,+∞) になって、扱うxを底とする対数関数が log_x|y| y∈I から log_x(y) y>0 になったことと、示す命題とが変わっただけ。
その大雑把な証明の行間を埋めて書くと以下のようになる。
[命題]:一般に、任意の正の超越数xと、任意の |y|≠0 かつ |y|≠1 なる代数的数 y∈R に対して、log_x|y| は無理数である。
証]:或る正の超越数xと、或る |y|≠0 かつ |y|≠1 なる代数的数 y∈R が存在して、log_x|y|∈Q とする。
仮定からxは正の超越数だから、任意の0とは異なる整数pに対して x^p は正の超越数である。
また同様に、仮定からyは実数であって |y|≠0 かつ |y|≠1 なる代数的数だから、|y| は1とは異なる正の代数的数である。
従って、log_x|y| に対して或る既約有理数 p/q (p,q)=1 q>1 が存在して log_x|y|=p/q から x^{p/q}=|y|、
故に x^{2p/q}=y^2。仮定からxは正の超越数だから、x^{2p/q} は正の超越数である。
しかし、仮定からyは実数の代数的数だから、y^2 は正の代数的数である。従って、x^{2p/q}≠y^2 となる。故に矛盾が生じる。
背理法が適用出来るから、背理法を適用すると、示すべき結論は導かれる。
659: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/30(日) 08:55:08.06 ID:A4Yw8jtX(8/8) AAS
>>657
つー、>>658
661: 132人目の素数さん [] 2018/12/30(日) 09:00:13.12 ID:Fgu/mMxZ(11/17) AAS
>>658
>他に、言いたいことないですか?(^^
ヒルベルトの無限ホテルやら
有理数の小数展開からの
尻尾の同値類の代表元の選定やら
に関して「可算選択公理」は必要とか
いうのは貴様の誤解だから撤回しろ
選択公理はあくまで写像が構成出来ない場合に
その存在を主張するためにあるのであって、
構成できる場合はそれで存在が証明されるから
必要ない こんなこと数学界の常識
知らないスレ主がバカなだけだ
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s