[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
627(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/29(土) 19:36:12.43 ID:nqXwmrkU(26/30) AAS
>>625
つづき
若干の補足:
「バナッハ=タルスキーのパラドックス」が、”選択公理のせい”とよく言われるが、半分当たっていて半分外れ
”選択公理+無限集合のせい”というのが、正確なとらえ方だろうと
つまり、下記に解説があるが、3次元ユークリッド空間の有界な部分集合を、
点集合は選択公理を使ってつくられる選択集合で構成することで、パラドックス的状況が生じる
が、良く考えると、点集合は無限集合なわけで
それは、デデキント無限の性質=「ある集合が自身と対等な(すなわち同じ濃度を持つ)真部分集合が存在する」(下記”デデキント無限”参照)を持つわけで
ヒルベルトの無限ホテル(この場合可算無限集合)のパラドックスの3次元ユークリッド版と言えなくも無い
繰返すが、これらのパラドックスは、”選択公理+無限集合のせい”というのが、正確なとらえ方だろうと思う
https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%8A%E3%83%83%E3%83%8F%EF%BC%9D%E3%82%BF%E3%83%AB%E3%82%B9%E3%82%AD%E3%83%BC%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
バナッハ=タルスキーのパラドックス
(抜粋)
・3次元ユークリッド空間の有界な部分集合で、内部が空でないもの(つまり、有限の拡がりを持ち、曲線や曲面ではないもの)を任意に二つ選んだとすると、それらは分割合同である。
言い換えると、ビー玉を有限個に分割して組み替えることで月を作ったり、電話を組み替えて睡蓮を作ったり出来る(当然のごとく材質は変えられない)、ということである。
この定理の証明で、点集合は選択公理を使ってつくられる選択集合で構成されており、各断片はルベーグ可測ではない。
すなわち、各断片は明確な境界や通常の意味での体積を持たない。物理的な分割では可測な集合しか作れないので、現実にはこのような分割は不可能である。
しかしながら、それらの幾何学的な形状に対してはこのような変換が可能なのである。
つづく
628(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/29(土) 19:36:56.03 ID:nqXwmrkU(27/30) AAS
>>627
つづき
この定理は 3次元以上の全ての次元においても成り立つ。
2次元ユークリッド平面においては成り立たないものの、
2次元においても分割に関するパラドックスは存在する: 円を有限個の部分に分割して組替える事で、同じ面積の正方形を作ることが出来るのである。これはタルスキーの円積問題(en:Tarski's circle-squaring problem)として知られている。
2次元ユークリッド平面においては、合同変換ではなく面積を保つ変換に条件をゆるめると、バナッハ=タルスキーのパラドックスと同様な定理が成立することを、1929年にジョン・フォン・ノイマンが証明した。
https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
ヒルベルトの無限ホテルのパラドックス
https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90
無限
(抜粋)
デデキント無限
詳細は「デデキント無限」を参照
ある集合が自身と対等な(すなわち同じ濃度を持つ)真部分集合が存在するとき、その集合はデデキント無限であるという。デデキント無限でない集合はデデキント有限であるという。デデキント無限集合は常に無限集合であるが、その逆を証明するには弱い形の選択公理が必要である。無限集合が、デデキント無限集合であるということと、可算無限部分集合を持つことは同値である。
https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E7%84%A1%E9%99%90
デデキント無限
(抜粋)
デデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。それはつまり、A とA の真部分集合B の間に全単射が存在するということである。
(引用終り)
以上
632: 132人目の素数さん [] 2018/12/29(土) 19:49:18.82 ID:dAnabccJ(16/23) AAS
>>627-628
>「バナッハ=タルスキーのパラドックス」が、
>”選択公理のせい”とよく言われるが、
>半分当たっていて半分外れ
>>631に書いた通り、別に選択公理のせいではない
3次元以上の回転群に適用する場合、選択公理が必要なだけ
2次元以上の双曲変換群なら、選択公理抜きの分割で
同様のパラドックスが構成できる
まあ、球面と違って双曲空間全体に
有限の測度を割り当てることはしないから
実際には問題はないが
643(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/30(日) 07:28:42.51 ID:A4Yw8jtX(1/8) AAS
>>627 補足
>ヒルベルトの無限ホテル(この場合可算無限集合)のパラドックスの3次元ユークリッド版と言えなくも無い
ここ、補足だが、ヒルベルトの無限ホテル(この場合可算無限集合)のパラドックスには、“可算選択公理”が使われているということ
つまり、このパラドックスは、” 可算選択公理+可算無限集合のせい”だと
パラドックスは、『デデキント無限の性質=「ある集合が自身と対等な(すなわち同じ濃度を持つ)真部分集合が存在する」(上記”デデキント無限”参照)』が表れているのだと
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.047s