[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
117
(2): 132人目の素数さん [sage] 2018/12/18(火) 03:28:10.50 ID:Rxviyods(3/16) AAS
高校でも高1で実数の絶対値を定義してから底を正の実数xとする対数関数 log_x(y) y>0 が定義されているし、
大学の微分積分でも実数の絶対値を定義してから底を正の実数xとする対数関数 log_x(y) y>0 が定義されている。
その対数関数 log_x(y) y>0 の諸性質を導く方法は同じ。
その定義域 (0,+∞) を拡張して R\{0} にして底を正の実数xとする対数関数 log_x|y| y∈R\{0} としても、
計算の量は増えるが、絶対値を扱った後に対数を扱う点は、高校でも大学でも結局変わらないので、
その諸性質を導く方法は高校でも大学でも変わらない。
他にも複素変数z |z|<1 の対数関数(多価関数) log(1+z) |z|<1 も扱ったりする。
感じ方は人にもよるが、書き方はlog_x(y) y>0 に似ている。
そのようなことから、どうせなら、正の実数xを底とする対数関数 log_x(y) y>0 は、
その定義域 (0,+∞) を拡張して R\{0} にして log_x|y| y∈R\{0} としたいい方が工学屋にとってはいいだろう。
式を変形して計算する人にとってはいい定義だと思うぞ。工学屋は何より計算だろ。
125
(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/12/18(火) 10:33:52.62 ID:9tXcwzeR(1/9) AAS
>>115-119
おっちゃん、どうも、スレ主です。
ありがとう

だが、いつもながら、議論の本筋を外しているね

入試では、答案は戻ってこない!!
採点者は、熱心に汚い手書き答案を読んでくれるが、”採点ミスを誘導せず高得点を狙う書き方”をすべき

log_x|y|(おっちゃん) vs ”log_x (y) (ここに、log_x (y) は、xを底とする対数関数である)”(私)
の違い分かる?

そう、log_x (y) の「定義」を書いてあるってことだ(^^
つまり、自分の導入した記号や関数については、逐一「定義」を書く
いろんな数学の教科書や論文を見てみな。全部そうなっているよ
この数学の作法(定義を書く)が身についていない答案は、採点官の心証はマイナスだろうね
(特に数学科の院試ではね)

「log_x|y|(おっちゃん)」を、前スレ >>724ID:bB/JzT3mさんが、”xを底とする対数関数”だろうと救ってくれた
(落ちこぼれピエロは気づいてなかった(^^; )
だが、入試なら、採点官のそばには、ID:bB/JzT3mさんはいないよ

あと、類似だが
>仮定からxは正の超越数だから、任意の0とは異なる整数pに対して x^p は正の超越数である。

これ最初に、「背理法を使う」と宣言しないと、心証悪いよ
実際、前スレ>>697では
”仮定から x>0 であり、|y|≠0 かつ |y|≠1 だから、log_x|y| は0ではない有理数である”と書いていたでしょ?(^^

(参考:前スレ>>732
(引用開始)
[命題]:任意の正の超越数xと、任意の 正かつy≠1 なる代数的数 y∈R に対して、log_x (y) は無理数である。
    (注:ここに、log_x (y) は、xを底とする対数関数である)
[証明]:背理法を使う
 log_x (y) が有理数 とする。
 log_x (y) = p/q (ここに、p,q は整数)
従って、x^{p/q}=y
これは、矛盾である。
(∵超越数の有理数ベキが、代数的数と等しくなったから)
よって命題は成り立つ。
QED
(引用終わり)
135
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/12/18(火) 15:54:03.21 ID:9tXcwzeR(5/9) AAS
>>127-131
おっちゃん、どうも、スレ主です。
ありがとう

下記の命題の数学の本質は
”任意の正の超越数xを底とする対数関数で、その対数関数の変数y(真数yともいう)が代数的数を取るとき、無理数になる”
これで、まずx,yがいずれも正のときを論じれば、それで足りると思う

もっと補足すれば、”任意の正の超越数xを底とする対数関数”は、実関数の範囲で、その定義域を、正の実数に取るってことが本質で
(おっちゃんが>>117に書いてるように、複素関数まで広げると、一価関数でなくなるし)
なので”正の超越数xを、対数(実)関数で、代数的数(当然正)を入れると、無理数になる”よと
この4つの要素
これで、全て尽くされているでしょ?

で、対数関数に入れる数で、負の代数的数を考える意義は薄いでしょ?(^^

あと、気付いてないようだが
おいらは「・・、矛盾である。(∵超越数の有理数ベキが、代数的数と等しくなったから)」
と、理由付けを書いたんだ
これも、答案作成テクニックとして必要と思うよ
これ、採点基準にあったりすると、理由付け抜かすと、減点されかねないからね(^^
(どの程度詳しく書くかは、求められているレベル(詳しく書くべきかどうか)と、残り時間との相談だね
 時間に余裕があるなら、詳しく書けば良いのだが)

>>125
(再引用開始)
[命題]:任意の正の超越数xと、任意の 正かつy≠1 なる代数的数 y∈R に対して、log_x (y) は無理数である。
    (注:ここに、log_x (y) は、xを底とする対数関数である)
[証明]:背理法を使う
 log_x (y) が有理数 とする。
 log_x (y) = p/q (ここに、p,q は整数)
従って、x^{p/q}=y
これは、矛盾である。
(∵超越数の有理数ベキが、代数的数と等しくなったから)
よって命題は成り立つ。
QED
(引用終わり)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s