[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 http://rio2016.5ch.net/test/read.cgi/math/1544924705/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
624: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/29(土) 19:30:30.29 ID:nqXwmrkU >>622 つづき 定義 空集合を要素に持たない任意の集合族に対して、各要素(それ自体が集合である)から一つずつその要素を選び、新しい集合を作ることができる。 あるいは同じことであるが、空でない集合の空でない任意の族 A に対して写像 略 であって任意の x∈ A に対し f(x)∈ x なるものが存在する、と写像を用いて言い換えることが出来る(ここで存在が要求される写像 f を選択関数(英語版)という)。 歴史 集合論の創始者ゲオルク・カントールは、選択公理を自明なものとみなしていた。 実際、有限個の集合からなる集合族であれば、そのそれぞれの集合の中から順に1つずつ元を選び出し、それらを併せて集合とすればよいのであるから、このような操作ができることは自明である。 しかし、ツェルメロによる整列可能定理の証明に反論する過程で、エミーユ・ボレル、ルネ=ルイ・ベール、アンリ・ルベーグ、バートランド・ラッセルなどが選択公理の存在に気付き、新たな公理であることが認識されるようになった。 確かに、無限個の集合からなる集合族の場合、上のような操作を想定しても「順に選び出す」操作は有限回で終了することはないのだから、このような操作を行えるかどうかは必ずしも明らかではない。 バナッハ=タルスキーのパラドックスと選択公理 選択公理は「どれかひとつを選んで取り出すことができる」という一見当たり前で直感的な命題に見える。しかし、無限集合においてそのような選択を行えるかどうかは自明ではないという主張もある。 実際、選択公理は、一見、奇怪で非直観的な結果を導く。バナッハ=タルスキーのパラドックスはそのような結果の中でも有名なもので、 「有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができる」と、初歩的な概念のみで表現することができる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1544924705/624
625: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/29(土) 19:32:44.63 ID:nqXwmrkU >>623-624 (ダブりなので、どちから一つ省略) つづき 選択公理の変種 可算選択公理 カントール、ラッセル、ボレル、ルベーグなどは、無意識のうちに可算選択公理を使ってしまっている。 (引用終り) https://en.wikipedia.org/wiki/Axiom_of_choice#Criticism_and_acceptance Axiom of choice (抜粋) Restriction to finite sets The statement of the axiom of choice does not specify whether the collection of nonempty sets is finite or infinite, and thus implies that every finite collection of nonempty sets has a choice function. However, that particular case is a theorem of the Zermelo?Fraenkel set theory without the axiom of choice (ZF); it is easily proved by mathematical induction.[6] In the even simpler case of a collection of one set, a choice function just corresponds to an element, so this instance of the axiom of choice says that every nonempty set has an element; this holds trivially. The axiom of choice can be seen as asserting the generalization of this property, already evident for finite collections, to arbitrary collections. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1544924705/625
631: 132人目の素数さん [] 2018/12/29(土) 19:43:52.33 ID:dAnabccJ >>623-624 バナッハ=タルスキーのパラドックスは、 球面に適用する場合には選択公理が必要だが 例えば双曲平面全体に適用するなら別に必要ない なぜならバナッハ=タルスキーのパラドックスの肝は 「変換群が、階数2以上の自由群を部分群として持つか」 にあるのであって、双曲変換群の場合、階数2以上の自由群が 部分群として自然な形であらわれるから、選択公理を用いる必要がない http://rio2016.5ch.net/test/read.cgi/math/1544924705/631
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s