[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
85
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 07:28:53.69 ID:vPN/J1lJ(1/14) AAS
>>79 補足
"2)U(n)={X∈C^(n×n)|X*+X=0}は、名前はないかも。"

ここな
歪エルミート行列な(下記)

X*+X=0
 ↓
X*=-X
と視点を換えないといけなかった
おれも鈍いね(^^;
https://ja.wikipedia.org/wiki/%E6%AD%AA%E3%82%A8%E3%83%AB%E3%83%9F%E3%83%BC%E3%83%88%E8%A1%8C%E5%88%97
歪エルミート行列
(抜粋)
歪エルミート行列(わいえるみーとぎょうれつ、英語: Skew-Hermitian matrix)あるいは反エルミート行列(はんえるみーとぎょうれつ、英語: Anti-Hermitian matrix)とは、自身のエルミート共役が自身に負号をつけたものに等しいような複素正方行列のことである。つまり、n 次正方行列 A に対し、そのエルミート共役を A* で表すとき、A が歪エルミートならば、以下の条件を満たす。

A^*=-A.
行列 A の成分をあらわに書けば、これは次のようにも表せる。

(A^*)_{ij}= ̄ {A_{ji}}}=-A_{ij} (1 <= i,j <= n)
歪エルミート行列と似た定義を持つ行列として、エルミート行列がある。エルミート行列は自身と自身のエルミート共役が等しい。

H^*=H.
歪エルミート行列はエルミート行列と同じく、正規行列の特別な場合であり、?1 をユニタリ行列 U と見なせば、以下の正規行列の定義を満たしている。

A^*=AU.

性質
多くの点で歪エルミート行列はエルミート行列とちょうど反対の性質を持つ。

歪エルミート行列の成分を虚数単位 i で除することによりエルミート行列にできる。すなわち歪エルミート行列 A に対して
A=iH} A=iH
を満たす H はエルミート行列となる。実際、(iH)* = ?iH* なので iH は歪エルミートである。同様に ?iH も歪エルミートである。従って、A/i = ?iA および A/(?i) = iA はエルミートである。
歪エルミート行列 A の対角成分はすべて純虚数である。
(A^*)_{ii}= ̄ {A_{ii}}}=-A_{ii} (1 <= i <= n)
従って、そのトレースも純虚数である。
86
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 07:30:45.82 ID:vPN/J1lJ(2/14) AAS
>>85
追加

(参考)
歪対称性(わいたいしょうせい)
https://ja.wikipedia.org/wiki/%E5%8F%8D%E5%AF%BE%E7%A7%B0%E6%80%A7
反対称性
(抜粋)
反対称性(はんたいしょうせい)とは数学で、ある要素にある変換を施した結果が、元の要素に逆符号を付けたもの(実数でいえば絶対値が同じで正負が逆)と等しくなる、という性質をいう。
対象分野によっては交代性(こうたいせい)または歪対称性(わいたいしょうせい)とも呼ばれる。このような要素を「その変換に対して反対称である」という。変換によって変化しない「対称性」に類似した性質であり、対称性・反対称性とも全くない「非対称性」とは異なる。反対称性の要素に変換を複数回施すと、元と同じになる。
87
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 07:32:30.99 ID:vPN/J1lJ(3/14) AAS
>>86
ご参考追加

反対称関係:「ある変換により符号が反転する性質を反対称性というが、この概念とも直接の関係はない。」
https://ja.wikipedia.org/wiki/%E5%8F%8D%E5%AF%BE%E7%A7%B0%E9%96%A2%E4%BF%82
反対称関係
(抜粋)
反対称関係(はんたいしょうかんけい、antisymmetric relation)とは、集合 X に関する二項関係 R であって、次の条件を満たすものをいう。

∀ a,b ∈ X, (aRb ∧ bRa → a=b)
すなわち、X の任意の元 a と b に対して「a から b への関係、および b から a への関係がともに成り立つならば、a = b である」ような関係のことである。この条件を反対称律という。

また、反対称律は次の条件と同値である。

∀ a,b ∈ X, (aRb ∧ a ≠ b→ ¬ bRa)
すなわち、反対称関係とは「a からb への関係が成り立ち、かつ a と b が等しくないならば、b から a への関係は成り立たない」ような関係であると定義してもよい。

反対称律に加え、反射律および推移律が成り立つ二項関係を、順序関係という。したがって、一般に順序関係は反対称関係である。例えば、実数における大小関係 (?) や集合における包含関係 (⊂) は順序関係であるから、反対称関係でもある。順序関係でなく、反対称関係である関係の例としては、等号なしの大小関係 (<) が挙げられる。

反対称関係は対称関係の論理的否定ではない。対称関係でも反対称関係でもある関係(等号など)もあり、また対称関係でも反対称関係でもない関係もある。対称関係でないものは非対称関係と呼ばれる。なお、ある変換により符号が反転する性質を反対称性というが、この概念とも直接の関係はない。
88
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 07:34:40.20 ID:vPN/J1lJ(4/14) AAS
>>87
全く関係ないけど、検索ヒットしたので(^^

随伴作用素:「等式 < Ax,y > =< x,A^*y > は形の上では圏論における随伴対を定義する性質と同じ形をしている。そしてこれは随伴函手の名の由来でもある。」
https://ja.wikipedia.org/wiki/%E9%9A%8F%E4%BC%B4%E4%BD%9C%E7%94%A8%E7%B4%A0
随伴作用素
(抜粋)
数学の特に函数解析学において、ヒルベルト空間上の各有界線型作用素は、対応する随伴作用素(ずいはんさようそ、英: adjoint operator)を持つ。作用素の随伴は正方行列の随伴行列の概念の無限次元の場合をも許すような一般化である。ヒルベルト空間上の作用素を「一般化された複素数」と考えれば、作用素の随伴は複素数に対する複素共軛の役割を果たすものである。
作用素 A の随伴は、シャルル・エルミートに因んでエルミート共軛 (Hermitian conjugate) とも呼ばれ、A? あるいは A† などで表される(後者は特にブラケット記法とともに用いられる)。

その他の随伴
等式
< Ax,y > =< x,A^*y >
は形の上では圏論における随伴対を定義する性質と同じ形をしている。そしてこれは随伴函手の名の由来でもある。
89
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 07:37:55.49 ID:vPN/J1lJ(5/14) AAS
>>86-87

似ているが違う事項(項目)は、
その違いを明確にしながら、
関連項目として学ぶべし
だな
100
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:20:43.22 ID:vPN/J1lJ(6/14) AAS
>>88
>等式 < Ax,y > =< x,A^*y > は形の上では圏論における随伴対を定義する性質と同じ形をしている。そしてこれは随伴函手の名の由来でもある。

随伴関手
https://ja.wikipedia.org/wiki/%E9%9A%8F%E4%BC%B4%E9%96%A2%E6%89%8B
随伴関手
(抜粋)
数学の特に圏論における随伴(ずいはん、英: adjunction)は、二つの関手の間に考えることができる(ある種の双対的な)関係をいう。随伴の概念は数学に遍在し、最適化や効率に関する直観的概念を明らかにする。

最も簡潔な対称的定義において、圏 ?? と ?? の間の随伴とは、二つの関手

F: D → C, G: C → D
の対であって、全単射の族
hom _ C(FY,X) 〜= hom _ D(Y,GX)
が変数 X, Y に関して自然(あるいは函手的)となるものを言う。このとき、関手 F を左随伴函手と呼び、他方 G を右随伴函手と呼ぶ。また、「F は G の左随伴である」 (同じことだが、「G は F の右随伴である」)という関係を
F ? G
と書く。

以下では、この定義や他の定義を詳細化する。

つづく
101
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:21:29.45 ID:vPN/J1lJ(7/14) AAS
>>100

つづき

目次
1 導入
1.1 綴り
2 動機
2.1 最適化問題の解として
2.2 最適化問題の逆
3 形式的な定義
3.1 記法の約束
3.2 普遍射による定義
3.3 余単位-単位随伴による定義
3.4 hom集合随伴
4 随伴の全容
4.1 普遍射がhom集合随伴を導くこと
4.2 余単位-単位随伴がhom集合随伴を導くこと
4.3 hom集合随伴が上の全てを導くこと
5 歴史
5.1 随伴の遍在性
5.2 様々な問題の定式化
5.3 半順序集合
6 例
6.1 自由群
6.2 自由構成と忘却関手
6.3 対角関手と極限
6.4 余極限と対角関手
6.5 さらなる例
6.5.1 代数
6.5.2 位相
6.5.3 圏論
6.5.4 Categorical logic
7 性質
7.1 存在性
7.2 一意性
7.3 合成
7.4 極限の保存
7.5 加法性
8 関連
8.1 普遍的構成
8.2 圏同値
8.3 モナド

つづく
102
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:22:22.73 ID:vPN/J1lJ(8/14) AAS
>>101

つづき

hom集合随伴
圏CとDの間のhom集合の随伴は2つの関手 F : C ← D と G : C → D および、自然同型
Φ : hom _{C}(F-,-) → hom _{D}(-,G-)
のことをいう。これはCの各対象XとDの各対象Yで添え字付けられた全単射の族
Φ _{Y,X}: hom _c(FY,X) → hom _{D}(Y,GX)
を定める。
このとき、 FはGの左随伴であり GはFの右随伴であるという。

随伴の全容
以上のことから、随伴にはたくさんの関手や自然変換を持っているが、その一部を決めるだけで他のものは決定される。

つづく
103
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:22:51.77 ID:vPN/J1lJ(9/14) AAS
>>102

つづき

歴史
随伴の遍在性
随伴関手の考えはダニエル・カンによって1958年に定式化された。多くの圏論の概念と同様に、ホモロジー代数において計算を行おうとした際に必要になったために導入された。この問題のきれいで系統的な表現を与えようと向き合った人々はアーベル群の圏において
hom(F(X), Y) = hom(X, G(Y))
のような関係があることに気づいていた。ここで、Fは関手 -* A(つまり、Aとテンソル積を取る)であり、Gは関手hom(A,?)である。
(注:-* Aの ”*”は、xを○で囲んだテンソル積の代用である。無理をすると文字化けするので、 ”*”で代用した。)
ここで等号を使うのは記号の乱用である。これらの群は実際には等しくないが、等しく見せるような自然な方法がある。自然に感じられる理由として、一番に、元々はこれらがX × AからYへの双線形写像の2つの異なった表現であるからである。しかし、これはテンソル積に関するいくぶん固有な話である。圏論においての全単射の自然性は自然同型の概念が元になっている。

この用語はヒルベルト空間において、上記のhom集合の間の関係と似た関係 \langle Tx,y\rangle =\langle x,Uy\rangle } \langle Tx,y\rangle =\langle x,Uy\rangle を満たす、随伴作用素TとUから来ている。FはGの左随伴といい、GはFの右随伴という。ただし、G自身もFとはかなり異なった右随伴を持ちうる(以下の例を見よ)。ある種の文脈においては、詳細なヒルベルト空間の随伴写像のアナロジーが可能である[1]。

これらの随伴関手の対を探し始めると、実は抽象代数では非常にありふれたことであり、他の分野でも同様であることが分かる。以下の例の節ではこの証拠を与える。さらに、普遍的構成はもっと普通にたくさんの随伴関手の対に持ち上げることができる。

つづく
104
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:23:35.70 ID:vPN/J1lJ(10/14) AAS
>>103

つづき

様々な問題の定式化
数学者は一般的には完全な随伴関手の概念を必要としているわけではない。彼らの解こうとしている問題にあっているかや証明に必要かどうかで必要な概念かどうかを判定している。圏論の初期段階である1950年代にはこれらの動機に大きく引っ張られていた。
アレクサンドル・グロタンディークの時代になって、圏論は他の仕事における指針として使われるようになった。はじめは関数解析とホモロジー代数であり最終的には代数幾何で使用された。

彼が随伴関手の概念を分離したというのはおそらく誤っているといえるが、随伴の特別な役割についてグロタンディーク固有の認識はあった。例えば、彼の著名な業績のひとつに、相対型のセール双対性、くだいていうと、代数多様体の連続な族に関するセール双対性がある。
この証明の全体は結局のところある関手の右随伴が存在するかということになる。これは完全に抽象的で非構成的であるが、それなりに強力でもある。

半順序集合
2つの半順序集合の間の随伴関手対はガロア接続と呼ばれる(そして、反変の場合は、antitoneガロア接続である)。ガロア接続の記事に多くの例がある。とくにガロア理論が一番の例である。任意のガロア接続は閉包作用素や対応する閉じた要素間の逆順序を保存する全単射に持ち上げることが出来る。

ガロア群の場合と同様に、実際の興味はしばしば双対との対応(例えば、antitone順序の同型)を詳細化していくことにある。Kaplanskyよるこのガロア理論の捕らえ方は、ここに一般的な構造があることへの認識に影響を与えた。

つづく
105: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:24:16.77 ID:vPN/J1lJ(11/14) AAS
>>104

つづき

代数
・グロタンディーク構成: 発端は、K-理論において位相空間上のベクトル束の圏が直和の下で可換モノイド構造を持つことである。各ベクトル束(の同値類)に加法逆元を形式的に追加することにより、このモノイドをグロタンディーク群と呼ばれるアーベル群にすることができる。同じことだが、各群を(逆元の存在を忘れることにより)その台となるモノイドへ写す函手は左随伴を持つ。
このようなグロタンディーク構成は、自然数からの負の整数の構成をなぞるようにすることもできるし、存在定理として使うこともある。有限項演算の代数構造の場合に対しては、そのような構成の存在性は普遍代数学やモデル理論に言及することもできるし、圏論的に適当な形での証明としても自然に述べられる。
・群の表現論におけるフロベニウス相互律によれば、表現の誘導は表現の制限の左随伴である。

位相
・層の順像と逆像。全ての連続写像f : X → YはX上の層(集合の層、アーベル群の層、環の層など)からYの対応する層への関手f *を誘導し、順像関手と呼ばれる。さらに、Y上のアーベル群の層からX上のアーベル群の層への関手 f ?1 も誘導され、逆像関手と呼ばれる。f ?1 は f * の左随伴である。ここで微妙な点は連接層での左随伴は(集合の)層のそれとは異なっていることである。
(引用終り)
106
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:26:56.94 ID:vPN/J1lJ(12/14) AAS
いやー、随伴はむずいね
細かいところは、よく分らん(^^;
hom集合はちょっとだけ慣れてきた(^^
107
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:36:02.54 ID:vPN/J1lJ(13/14) AAS
>>100
>F ? G

やっぱり文字化けしたか
随伴を表わすTの字を、右に倒したような記号なんだ

代用で罫線を試して見るよ



?
108: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/17(月) 23:36:49.36 ID:vPN/J1lJ(14/14) AAS
>>107
おお、罫線は文字化けしないね(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.048s