[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む56 (768レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
41(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2018/12/16(日) 13:42:16.47 ID:JTc4r8fR(34/55) AAS
>>40
つづき
グロタンディークのガロア理論において古典的なガロア理論は次のように理解される。
K上のエタール代数はアフィンスキーム Spec(K) の上のエタール層を表しており、埋め込みK → K?sep に対応する射 Spec(K?sep) → Spec(K) が表す「点」でのファイバーをとることに対応する関手 FK?sep: A → HomK(A, K?sep) が、圏同値 : Spec(K) 上のエタール層の圏 EtK ≡ G が連続的に作用する集合の圏 BG をひき起こしている。
また、絶対ガロア群はこのファイバー関手の自己同型群として実現されており、
特定の公理を満たしている関手
{F} _{K^ {sep} }: {Et} _{K}→ {Sets} からガロア群を復元できることが分かる。
また、上の圏同値によって、体 K上の ガロアコホモロジーは、Spec(K) 上のエタール・コホモロジー理論と同値となる。
(引用終り)
127(2): 132人目の素数さん [sage] 2018/12/18(火) 11:05:33.47 ID:Rxviyods(7/16) AAS
>>125
>log_x|y|(おっちゃん) vs ”log_x (y) (ここに、log_x (y) は、xを底とする対数関数である)”(私)
>の違い分かる?
>
>そう、log_x (y) の「定義」を書いてあるってことだ(^^
>つまり、自分の導入した記号や関数については、逐一「定義」を書く
>いろんな数学の教科書や論文を見てみな。全部そうなっているよ
実数yについて |y|=0 となるための必要十分条件はyの値が y=0 になることも、
高校の場合は高1でやるし、大学でも底を正の実数xとする対数関数 log_x(y) y>0 が定義する前にやることも共通している。
実数yについて |y|=0 となるための必要十分条件はyの値が y=0 になることだから、
任意の 正の実数yに対して log_x (y)∈R が定義されることは、
結局、任意の0とは異なる log_x|y|∈R が定義されることと何ら変わらず同じなんことだが。
133(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2018/12/18(火) 15:21:26.47 ID:9tXcwzeR(3/9) AAS
>>132
>>xを底とする対数関数
>数学の言葉の使い方からしてめちゃくちゃ
そうかな
「関数 log a?x を a を底とする対数関数と呼ぶ」(下記)
で、普通に、このおっちゃんの場合(”log_x|y|”)は、「xを底とする対数関数」になると思う
あとな、”log_x|y|”でな、対数の底は教科書などでは、下付き添え字なんだよね
ところが、この5CH数学バカ板では、アスキー記法限定で、下付き添え字が使えないから、余計に書く方が気配りしないと、誤解を招く
(手書きの数学答案も、下付き添え字は分かりにくいから、配慮がいるってこと。きちんと、定義でうたわないとね)
あんた、ピエロはだろ? 学力低いね
中学からやり直した方が良いと
思う
https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0
対数
(抜粋)
対数(たいすう、英: logarithm)とは、ある数 x を数 b の冪乗 b^p として表した場合の冪指数 p である。この p は「底を b とする x の対数(英: logarithm of x to base b; base b logarithm of x)」と呼ばれ、通常は log b?x と書き表される。
定義
演算法則からの定義
f_a(x)=log a x
と書き、この関数 log a?x を a を底とする対数関数と呼ぶ。
328(2): 132人目の素数さん [] 2018/12/24(月) 07:09:31.47 ID:6oRe+bIf(2/16) AAS
>>318
>4 非ユークリッド幾何学へ−公理とは何か?−
>Theorem 4.1.1 (Saccheri-Legendre). 三角形の内角の和は2直角を超えない。
ここから、球面幾何が(4公準を満たす)「非ユークリッド幾何」でない、といえる
なぜなら球面幾何では三角形の内角の和は常に2直角より大きいから
またスレ主は自爆したね おまえ日本語読めないで引用してんの?馬鹿?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.045s