大学数学の質問スレ Part1 (319レス)
上下前次1-新
215(2): 07/30(水)17:20 ID:5T+RajIt(2/5) AAS
For p ∈ U and X_p ∈ T_p U, define (df)_p (X_p) = X_p f.
と書いてあるので、 X_p は単なる1つの変数を表わす記号ではありません。
216(1): 07/30(水)17:23 ID:Owbf1GR5(2/6) AAS
>>208
>>209に書いたのは
pがその説明のxにあたり
g(x)を定義しようとしているのではなくて
f(x)に対してg(x,f)を定義しようとしているということを
理解すべきだということ
217: 07/30(水)17:24 ID:5T+RajIt(3/5) AAS
From any C^∞ function f : U → R, we can construct a 1-form df, called the differential of f, as follows. For p ∈ U and X_p ∈ T_p U, define (df)_p (X_p) = X_p f.
218(1): 07/30(水)17:26 ID:Owbf1GR5(3/6) AAS
>>215
>X_p は単なる1つの変数を表わす記号ではありません。
X_pはT_p Uの元だからただのベクトルよ
pごとに別々のベクトル空間のベクトルを考えることになるので
X_pと書いているけれど
219: 07/30(水)17:27 ID:Owbf1GR5(4/6) AAS
なんならdf_p(v)=v(f)でもいい
220: 07/30(水)17:29 ID:J31VdO3g(5/6) AAS
>>215
どう見ても1つの変数じゃん
221: 07/30(水)17:30 ID:Owbf1GR5(5/6) AAS
>>218
>ただのベクトルよ
ただの接ベクトルよ
か
222: 07/30(水)17:33 ID:Owbf1GR5(6/6) AAS
>>216
>f(x)に対してg(x,f)を定義しようとしているということを
同じ記号f使ったので混乱させたかも知れんスマン
φ(x)に対してg(x,φ)を定義しようとしているようなものよ
223: 07/30(水)17:36 ID:J31VdO3g(6/6) AAS
nとかkとか書いたら整数と解釈するのと同じように、_pをつけた変数は点pに紐づいたベクトル空間を動く変数ですよって明示するために付けてるんだよ
ハンガリアン記法みたいなもんだ
224: 07/30(水)17:46 ID:5T+RajIt(4/5) AAS
X_p は a derivation at p を表わす変数ということですか。
確かにそう解釈するのが正しそうですね。
>(df)_p は T_p(R^n) から R への線形写像です。
>T_p(R^n) の一般の元は Σ v^i * ∂/∂x^i |_p とかけますが、
>なぜ、 (df)_p への入力を X_p にしているのでしょうか?
そして、 T_p(R^n) の元をわざわざ標準的な基底の線形結合で v^1 * ∂/∂x^1 |_p + … + v^n * ∂/∂x^n |_p と書いて
(df)_p : v^1 * ∂/∂x^1 |_p + … + v^1 * ∂/∂x^1 |_p → v^1 * ∂f(p)/∂x^1 + … + v^1 * ∂f(p)/∂x^n
と定義するのは不自然ですね。
みなさん、ありがとうございました。
225: 07/30(水)17:50 ID:5T+RajIt(5/5) AAS
訂正します:
X_p は a derivation at p を表わす変数ということですか。
確かにそう解釈するのが正しそうですね。
>(df)_p は T_p(R^n) から R への線形写像です。
>T_p(R^n) の一般の元は Σ v^i * ∂/∂x^i |_p とかけますが、
>なぜ、 (df)_p への入力を X_p にしているのでしょうか?
そして、 T_p(R^n) の元をわざわざ標準的な基底の線形結合で v^1 * ∂/∂x^1 |_p + … + v^n * ∂/∂x^n |_p と書いて
(df)_p : v^1 * ∂/∂x^1 |_p + … + v^n * ∂/∂x^n |_p → v^1 * ∂f(p)/∂x^1 + … + v^n * ∂f(p)/∂x^n
と定義するのは不自然ですね。
みなさん、ありがとうございました。
226: 07/30(水)18:01 ID:UzKE/KGY(1) AAS
そもそも標準的な基底(∂/∂x^j)と言ってるけどUの座標系は1つ固定して考えているのだろうか
∂/∂x^jという記号の定義を勘違いしてはないだろうか
227: 07/31(木)14:29 ID:5t/NXspK(1/9) AAS
あ、やっぱり X_p は U ⊂ R^n の点 p の関数と解釈しないとおかしいですね。
From any C^∞ function f : U → R, we can construct a 1-form df, called the differential of f, as follows. For p ∈ U and X_p ∈ T_p U, define (df)_p (X_p) = X_p f.
X_p のが単なる一つの変数だとすると X_p の p には何の意味もないことになります。
(df)_p (X_p) = X_p f の(df)_p の p は U ⊂ R^n の点を表しています。それにもかかわらず、右辺には点 p についての情報が全くありません。
これは明らかにおかしなことです。
228: 07/31(木)14:30 ID:5t/NXspK(2/9) AAS
訂正します:
あ、やっぱり X_p は U ⊂ R^n の点 p の関数と解釈しないとおかしいですね。
From any C^∞ function f : U → R, we can construct a 1-form df, called the differential of f, as follows. For p ∈ U and X_p ∈ T_p U, define (df)_p (X_p) = X_p f.
X_p が単なる一つの変数だとすると X_p の p には何の意味もないことになります。
(df)_p (X_p) = X_p f の(df)_p の p は U ⊂ R^n の点を表しています。それにもかかわらず、右辺には点 p についての情報が全くありません。
これは明らかにおかしなことです。
229: 07/31(木)14:34 ID:5t/NXspK(3/9) AAS
あ、 X_p はやっぱり p の関数ではないですね。ただし、点 p での derivation であるという情報はもっていますね。
230: 07/31(木)14:46 ID:5t/NXspK(4/9) AAS
Tuさんの本ですが、言葉での説明が足らないですね。
例えば、 (df)_p は方向ベクトルを入力として、 f の点 p での方向微分の値を返す関数ですが、このような説明が全くありません。
ただ、定義だけを書いています。
231: 07/31(木)16:21 ID:5t/NXspK(5/9) AAS
(df)_p(X_p) が f, p, X_p の3変数の関数 g で点 p での X_p 方向の f の方向微分を表わすということが分かれば、
df は点 p とそこでの方向ベクトル X_p が与えられたときに、 f の点 p での X_p 方向の f の方向微分を返す関数だと分かります。
(df)_p は方向ベクトル X_p が与えられたときに、 f の点 p での X_p 方向の f の方向微分を返す関数だと分かります。
X f は点 p が与えられたときに、 f の点 p での X_p 方向の f の方向微分を返す関数だと分かります。
色々な関数が登場しますが、それらが何なのかがはっきりと分かります。
232: 07/31(木)16:29 ID:bu4D4TmA(1/4) AAS
>For p ∈ U and X_p ∈ T_p U, define (df)_p (X_p) = X_p f.
この文章読めば普通に分かるだろ
For p ∈ U and X(p) ∈ T_p U
で、動くのは関数Xなんて文章は英語としておかしいんだよ
233: 07/31(木)17:13 ID:5t/NXspK(6/9) AAS
Tuさんは (df)_p(X_p) が f, p, X_p の3変数の関数 g で点 p での X_p 方向の f の方向微分を表わすということが分かっていれば自明な
df = Σ ∂f/∂x^i dx^i
という等式を長々とした見通しの悪い議論で証明しています。
df は点 p とそこでの方向ベクトル X_p が与えられたときに、点 p での X_p 方向の f の方向微分を返す関数です。
ですので、
dx^i は点 p には依存しない方向ベクトルにのみ依存する関数です。具体的には、方向ベクトルを入力としてその x^i 成分を返すような関数です。
df_p は方向ベクトル X_p が与えられたときに、 f の点 p での X_p 方向の方向微分を返す関数です。
合成関数の微分法の公式により、 df_p(X_p) = Σ ∂f(p)/∂x^i * (X_p の x_i 成分) = Σ ∂f(p)/∂x^i * (dx^i)_p(X_p) が成り立ちます。
よって、 df = Σ ∂f/∂x^i dx^i が成り立ちます。
自明です。
234(1): 07/31(木)17:38 ID:bu4D4TmA(2/4) AAS
d(x_i)を座標で書くのに証明しようとしてる定理が必要だろ
235(1): 07/31(木)17:46 ID:5t/NXspK(7/9) AAS
>>234
ちょっと何を言っているのか分かりませんが、いいたいことは、
Tuさんは、 (df)_p(X_p) が f, p, X_p の3変数の関数 g で点 p での X_p 方向の f の方向微分を表わすということさえ分かっていれば自明なことを色々と無駄に証明しているということです。
そして、 (df)_p(X_p) が f, p, X_p の3変数の関数 g で点 p での X_p 方向の f の方向微分を表わすということをはっきりと書いていません。
一体何がしたいんだという感じです。
236: 07/31(木)18:10 ID:bu4D4TmA(3/4) AAS
>>235
分かっていればの前に書いてあることを証明しろよ
237(1): 07/31(木)18:27 ID:bu4D4TmA(4/4) AAS
彼が何を証明しようとして、どう証明できたと主張しているのか1ミリも分からない
238: 07/31(木)19:28 ID:H1SJ8SaT(1) AAS
>>237
同感w
239(1): 07/31(木)19:32 ID:5t/NXspK(8/9) AAS
微分形式について初めて勉強していますが、深い話はなさそうだという印象です。
単なる非常に単純な代数的な話を抽象的でややこしく議論しているという印象です。
行列式の理論に深い話がないのと似ているという印象です。
240: 07/31(木)19:33 ID:5t/NXspK(9/9) AAS
訂正します:
微分形式について初めて勉強していますが、深い話はなさそうだという印象です。
非常に単純な代数的な話を抽象的にややこしく議論しているという印象です。
行列式の理論に深い話がないのと似ているという印象です。
241: 07/31(木)21:13 ID:sBGfMEXB(1) AAS
えぇ……あれだけ本読んでやっと初めて微分形式に辿り着いたの???
242: 07/31(木)21:46 ID:0xl8lSxV(1) AAS
>>239
書いてた話読んでみたけど
定義の意味が分かった程度じゃ無いの?
まあそこまでしか行けなければ
別にそれでもいいのでは?
243(1): 08/01(金)11:35 ID:BgSH8qMi(1) AAS
テンソル代数ですが、Tuさんの本でのテンソル代数と佐武一郎さんの本でのテンソル代数って同じものなんですか?
244: 08/06(水)16:26 ID:UkGZOPgX(1) AAS
>>243
別物と思うの?
次の質問にどう答える?
ベクトル空間ですが、Tuさんの本でのベクトル空間と佐武一郎さんの本でのベクトル空間って同じものなんですか?
上下前次1-新書関写板覧索設栞歴
あと 75 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.014s