[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
930(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/19(土)23:39 ID:jT6bEcWg(4/5) AAS
>>920-921 補足
補強しておくよ ;p)
>>563より
外部リンク:ja.wikipedia.org
ペアノの公理
自然数の全体を特徴づける公理
自然数の集合論的構成
N:=∩{x⊂A∣∅∈x∧∀y[y∈x→y∪{y}∈x]}*
0:=∅
S(x):=x∪{x}
具体的な自然数は
1:=S(0)={0}={∅}
2:=S(1)={0,1}={∅,{∅}}
3:=S(2)={0,1,2}={∅,{∅},{∅,{∅}}}
4:=S(3)={0,1,2,3}={∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}}
のようになる。この構成法はジョン・フォン・ノイマンによる**[7]。
( 注*)ここに ∩ を使っているが、下記 坪井明人 筑波大 は ∩は使わない
**)この構成法のS(x):=x∪{x}で、S(x)はそれまでの自然数をすべて含み
例えば4の濃度は4 など となり、綺麗な自然数構成になる(by スレ主))
対して
外部リンク[pdf]:www.math.tsukuba.ac.jp (>>563)
数理論理学II 坪井明人 筑波大
P8
1.1.9 無限公理
無限公理:
集合 x に対して,x ∪ {x} を S(x) で表す.例えば,S(∅) = {∅}, S^2(∅) =S(S(∅)) = {∅, {∅}} である.
S は,successor の頭文字で,次の元*)という意味を持たせている.
( 注*)しばしば後者 あるいは後者関数と呼ばれる(by スレ主))
無限公理:
∃x(∅ ∈ x ∧ ∀y(y ∈ x → S(y) ∈ x)).
x は ∅(0 と思う)を含んでいて,y が x に属すれば,y の次の元 S(y) も x に
属している.そのような x が存在することを主張するのが無限公理である.
直観的には,自然数全体のような集合が存在することを意味する.
無限公理によって保証される集合は, ∅, S(∅), S^2(∅), S^3(∅), . . . をすべて元
として含む集合である.しかし余分な元を含んでいるかも知れない.そこで自然数全体の集合 ω を
{∅, S(∅), S^2(∅), S^3(∅), . . . }
として定義したい.しかし「. . . 」の部分は直観的な説明としては容認できるが,
我々の立場では定義とは言い難い 1.そこで ω を条件
∅ ∈ x ∧ ∀y(y ∈ x → S(y) ∈ x)
を満たす最小の集合 x として定義したい:無限公理によって保証される無限集合 X を一つ選び,
ω = {y ∈ X : ∀x(φ(x) → y ∈ x)}*
とする.ここで φ(x) は ∅ ∈ x ∧ ∀y(y ∈ x → S(y) ∈ x) である.このようにす
れば,ω は集合であり,φ(x) を満たす最小のものになる(もちろん X の取り
方に依存しない).
( 注*)ωは 最初の無限順序数を表し、ノイマン構成では ω=Nである
坪井明人は、∩を使わない。この方が 簡明に思える(by スレ主))
(引用終り)
要するに 坪井明人 筑波大の方が、ja.wikipediaの ペアノの公理 自然数の集合論的構成の
記号 ∩ を使った人よりも ちょっと賢い気がする今日この頃だなw ;p)
932: 07/20(日)00:25 ID:2Jr4cGNB(1/29) AAS
>>930
何の補強にもなってなくて草
>要するに 坪井明人 筑波大の方が、ja.wikipediaの ペアノの公理 自然数の集合論的構成の
>記号 ∩ を使った人よりも ちょっと賢い気がする今日この頃だなw ;p)
どう賢いか具体的に
933: 07/20(日)00:26 ID:2Jr4cGNB(2/29) AAS
>>930
>坪井明人は、∩を使わない。この方が 簡明に思える
それってあなたの感想ですよね?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.043s