[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
867(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/10(木)10:20 ID:CJHicHXJ(1) AAS
>>854-866
ふっふ、ほっほ
ぐだぐだ 無駄な多弁を弄するね ;p)
さて
>>852-853より
外部リンク:en.wikipedia.org
Axiom of infinity
Extracting the natural numbers from the infinite set
Φ(x) be the formula that says "x is inductive"; i.e.
Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))).
Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that
∀x(x∈W↔∀I(Φ(I)→x∈I)). (*)
For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification.
Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then
x is in every inductive set, and if
x is in every inductive set, it is in particular in I, so it must also be in W.
For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element
x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set
W′ that satisfied (*) we would have that
W′⊆W since
W is inductive, and
W⊆W′since
W′is inductive. Thus W=W′.
Let ω denote this unique element.
This definition is convenient because the principle of induction immediately follows: If
I⊆ω is inductive, then also
ω⊆I, so that I=ω.■
(引用終り)
これで尽きている
1)”Informally, what we will do is take the intersection of all inductive sets.”
intersection:共通部分 英: intersection(下記)ね
2)で、これ ”Informally”とあるよね。つまり、
”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”>>727 は、”Informally”なんだよ
ここを勘違いした人が ja.wikipediaに >>847の”ペアノの公理”を 書いたんじゃないの?
3)さて、Formallyには ”Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set.”
だよね。ここに、”∩”は 使われない
詰んだな
(参考)
外部リンク:ja.wikipedia.org
共通部分( 英: intersection, meet)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである
868: 07/10(木)11:22 ID:e06yId8e(15/18) AAS
>>867
>ぐだぐだ 無駄な多弁を弄するね ;p)
あなたが理解できないレスは無駄な多弁に見えるんですね? 分かります その症状、あなたが理解すれば解決しますよ
869: 07/10(木)11:33 ID:e06yId8e(16/18) AAS
>>867
>1)”Informally, what we will do is take the intersection of all inductive sets.”
>2)で、これ ”Informally”とあるよね。つまり、
> ”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”>>727 は、”Informally”なんだよ
はいまた勝手読み。
Informallyである所以は
>all inductive sets
これを上手く定義できない(内包公理を使えば定義できるがZFには無い)から、任意のひとつのinductive set Aの部分集合族の共通部分で定義している。
勝手読み癖が抜けない無教養丸出しな現代数学の系譜 雑談は諦めて数学板から去ろうな
870: 07/10(木)11:36 ID:e06yId8e(17/18) AAS
>>867
>ここに、”∩”は 使われない
よほど∩が嫌いらしいw
そもそも∩の定義を論理式で記述できるんだから∩を使うか否かはまったく本質じゃない
無教養丸出し
920(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/19(土)15:34 ID:jT6bEcWg(2/5) AAS
>>874 戻る
>Informally と intersection が同一文内にある。だから∩を使った構成は間違い。
えーと >>867 より再録
>>852-853より
外部リンク:en.wikipedia.org
Axiom of infinity
Extracting the natural numbers from the infinite set
Φ(x) be the formula that says "x is inductive"; i.e.
Φ(x)=(∅∈x∧∀y(y∈x→(y∪{y}∈x))).
Informally, what we will do is take the intersection of all inductive sets. More formally, we wish to prove the existence of a unique set W such that
∀x(x∈W↔∀I(Φ(I)→x∈I)). (*)
For existence, we will use the Axiom of Infinity combined with the Axiom schema of specification.
Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set. This clearly satisfies the hypothesis of (*), since if x∈W, then
x is in every inductive set, and if
x is in every inductive set, it is in particular in I, so it must also be in W.
For uniqueness, first note that any set that satisfies (*) is itself inductive, since 0 is in all inductive sets, and if an element
x is in all inductive sets, then by the inductive property so is its successor. Thus if there were another set
W′ that satisfied (*) we would have that
W′⊆W since
W is inductive, and
W⊆W′since
W′is inductive. Thus W=W′.
Let ω denote this unique element.
This definition is convenient because the principle of induction immediately follows: If
I⊆ω is inductive, then also
ω⊆I, so that I=ω.■
(引用終り)
1)”Informally, what we will do is take the intersection of all inductive sets.”
intersection:共通部分 英: intersection(下記)ね
2)で、これ ”Informally”とあるよね。つまり、
”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”>>727 は、”Informally”なんだよ
ここを勘違いした人が ja.wikipediaに >>847の”ペアノの公理”を 書いたんじゃないの?
3)さて、Formallyには ”Let I be an inductive set guaranteed by the Axiom of Infinity. Then we use the axiom schema of specification to define our set
W={x∈I:∀J(Φ(J)→x∈J)}
– i.e. W is the set of all elements of I, which also happen to be elements of every other inductive set.”
だよね。ここに、”∩”は 使われない
(引用終り)
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.064s