[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
847(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/09(水)23:37 ID:iY1zm+dA(1) AAS
>>844
>>>1って共通部分∩すら理解できず言いがかりつけてくるあのアタオカのこと?
まだ言ってるよ この人w ;p)
えーと>>829
"外部リンク:en.wikipedia.org の Arbitrary intersections
に一般の集合族の共通部分の定義 (x∈∩M)⇔(∀A∈M, x∈A) が明記されている。
一般のだから2族でも任意有限族でも無限族でも意味は明白。おまえが理解できないだけの話。馬鹿だから。馬鹿は数学板から去ろうな。"
なんだね
さて、そもそもに戻るよ
君は、下記の ペアノの公理 の式
N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}
を、必死で擁護しているけれども
この式は、君が書いたのではないよね?
どこの馬の骨かわからん人の式だろ?
で、『Aは無限公理により存在する集合』だという
君がするべきことは、屁理屈のこね繰り回しではなく
この自然数Nの定義が、実際に無限公理を使って、2項演算∩の繰返しで
N={0,1,2,3,・・・} であることを証明することだよ
それが出来ないから、必死の屁理屈だろ? それ、丸わかりだよw ;p)
(参考)>>727より
外部リンク:ja.wikipedia.org
ペアノの公理
自然数の集合論的構成
現代数学において標準的な数学の対象はすべて集合として実現されている
集合論における自然数の標準的な構成法としては、
N:=∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}
0:=∅
S(x):=x∪{x}
がある。ただしここでAは無限公理により存在する集合を任意に選んだものである
外部リンク:ja.wikipedia.org
無限公理(英: axiom of infinity)とは公理的集合論におけるZF公理系を構成する公理の一つで、「無限集合の存在」を主張するものである。
定義
ZF公理系における公式な定義は次の通りである。
空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する:
∃A,∅∈A∧∀x∈A, x∪{x}∈A
(上記の英版)
外部リンク:en.wikipedia.org
Axiom of infinity
Formal statement
If the notations of both set-builder and empty set are allowed:
∃A(∅∈A∧∀x(x∈A→(x∪{x})∈A)) (注:英原文では AのところにIを使っているが、和文に合わせた)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.196s*